

Technical Handbook 5.8

Technical Handbook 5.8

2/488

Contents

1 Knowledge-Builder 7

1.1 Global actions and settings . 7

1.1.1 Global context menu . 7

1.1.2 Personal settings . 11

1.1.3 System settings . 23

1.1.4 Index configuration . 39

1.1.5 Configuration file kb.ini . 45

1.2 Access rights and triggers . 46

1.2.1 Check of access right . 47

1.2.2 Trigger . 61

1.2.3 Filter types . 71

1.2.4 Operation parameters . 79

1.2.5 Operations . 89

1.2.6 Testbench . 95

1.3 View Configuration . 99

1.3.1 Concept . 100

1.3.2 Menus . 106

1.3.3 Actions . 110

1.3.4 View configuration elements . 135

1.3.5 Knowledge Builder configuration . 186

1.3.6 Style . 192

1.3.7 Detector system for determining the view configuration 195

1.4 JavaScript API . 197

1.4.1 Introduction . 197

1.4.2 Examples . 201

1.4.3 Modules . 218

1.4.4 Editor/Debugger . 219

1.4.5 API extensions . 223

1.5 REST services . 225

1.5.1 Configuration . 225

1.5.2 Services . 226

1.5.3 Resources . 226

1.5.4 CORS . 234

1.5.5 OpenAPI documentation . 235

Technical Handbook 5.8

3/488

1.6 Reports and printing . 239

1.6.1 Create print templates . 240

1.6.2 Create print templates for lists . 247

1.6.3 Document format conversion with OpenOffice/LibreOffice 249

1.7 Tagging . 250

1.7.1 Configuration . 250

1.7.2 View configuration . 258

1.7.3 Tagging by Script . 259

1.7.4 Required software . 260

1.8 Development support . 260

1.8.1 Dev tools . 260

1.8.2 Dev service . 260

1.9 KB plugins and components . 260

1.9.1 Units component . 260

1.9.2 Custom components . 261

1.10 External Index . 284

1.10.1 Application Areas . 284

1.10.2 Export Mapping . 284

2 Admin Tool 284

2.1 Admin tool configuration . 285

2.2 Launch window . 285

2.2.1 Server . 286

2.2.2 Knowledge Graph . 286

2.2.3 Administrate, New and Start . 286

2.2.4 About . 286

2.3 Create a new Knowledge Graph . 287

2.3.1 Server . 288

2.3.2 New Knowledge Graph . 288

2.3.3 Server password . 289

2.3.4 License . 289

2.3.5 User name . 289

2.3.6 Password (user) . 289

2.3.7 Ok and Cancel . 289

2.4 Server administration . 289

2.4.1 Graph overview . 290

2.4.2 Message field . 290

Technical Handbook 5.8

4/488

2.4.3 Menu line . 290

2.5 Individual Knowledge Graph administration . 293

2.5.1 User authentication . 293

2.5.2 Individual Knowledge Graph administration window 294

3 View Configuration Mapper 318

3.1 Introduction . 318

3.2 Interaction patterns . 319

3.2.1 Building blocks of dynamic behavior . 319

3.2.2 Application state . 325

3.2.3 Interaction patterns and recipes . 326

3.3 Configuration . 334

3.3.1 Frontend configuration . 334

3.3.2 View configurations for the View Configuration Mapper 337

3.3.3 Login configuration . 346

3.3.4 The View Configuration Mapper component 346

3.3.5 Create a project with the View Configuration Mapper 349

3.3.6 Modify templates . 349

3.3.7 Operate the frontend . 349

3.4 Actions . 350

3.5 Panels . 350

3.5.1 Activation of panels . 352

3.5.2 Layout panels . 353

3.5.3 View panels . 354

3.5.4 Dialog panels . 354

3.6 Viewconfig elements . 357

3.6.1 General . 357

3.6.2 Alternative . 357

3.6.3 Layout . 359

3.6.4 Hierarchy . 361

3.6.5 Properties . 364

3.6.6 Property . 366

3.6.7 Edit . 371

3.6.8 Form inputs . 373

3.6.9 Table . 376

3.6.10 Search . 384

3.6.11 Graph configuration . 399

Technical Handbook 5.8

5/488

3.6.12 Text . 402

3.6.13 Image . 403

3.6.14 Script generated HTML . 403

3.6.15 Script generated view . 404

3.7 Bookmarks and history . 405

3.7.1 Bookmark Resource . 405

3.7.2 Link to Panels . 408

3.7.3 In-app navigation with bookmarks . 411

3.8 Plugins . 411

3.8.1 vcm-plugin-calendar . 412

3.8.2 vcm-plugin-chart . 413

3.8.3 vcm-plugin-html-editor . 416

3.8.4 vcm-plugin-maps . 418

3.8.5 vcm-plugin-markdown . 419

3.8.6 vcm-plugin-timeline . 421

3.8.7 vcm-plugin-page . 422

3.8.8 vcm-plugin-net-navigator . 423

3.9 Special configuration . 426

3.9.1 Switching language of web frontend . 426

3.9.2 Display change history in a web frontend 427

3.10 Installation . 430

3.10.1 Configuration of web servers . 431

3.11 Extension project . 432

3.11.1 Development environment . 432

3.11.2 Technical details . 432

4 i-views services 432

4.1 General . 432

4.1.1 Command line parameter . 432

4.1.2 Configuration file . 433

4.2 Mediator . 439

4.2.1 General . 439

4.2.2 System requirements . 440

4.2.3 Operating modes . 440

4.2.4 Installation . 444

4.2.5 Operation . 450

4.3 Bridge . 453

Technical Handbook 5.8

6/488

4.3.1 General . 453

4.3.2 Common command line parameters . 453

4.3.3 Configuration file "bridge.ini" . 454

4.3.4 REST bridge . 455

4.3.5 KEM bridge . 460

4.3.6 KLoadBalancer . 461

4.4 Jobclient . 462

4.4.1 General . 462

4.4.2 Configuration of the Jobclient . 463

4.5 Batch tool . 473

4.5.1 Common command line parameters . 474

4.5.2 Configuration file options . 474

4.5.3 Commands . 474

4.5.4 Running scripts . 478

4.5.5 Importing or exporting schema . 478

4.5.6 Importing licenses . 480

4.5.7 Upgrading components . 480

4.5.8 Executing a series of commands . 480

4.5.9 Example: Importing per batch tool . 481

4.6 Blob service . 481

4.6.1 Introduction . 481

4.6.2 Configuration . 482

4.6.3 SSL certificates . 483

4.7 Install as an OS service . 484

4.8 Login with OAuth 2.0 . 484

4.8.1 Limitations . 484

4.8.2 Authorization flow . 485

4.8.3 Configuration . 485

Technical Handbook 5.8

7/488

1 Knowledge-Builder

This technical handbook comprises all advanced configuration of the i-views Knowledge-

Builder, Admin-Tool, View Configuration Mapper and services as well. Basic fundamentals

about how to use the Knowledge-Builder are described in the User’s Manual.

1.1 Global actions and settings

All actions and settings, which are independant from the Knowledge Graph context, are so-

called "global actions" or "global settings". They are available in the upper right corner of the

Knowledge-Builder as long as the start screen is visible or when an element in the organizer

is chosen on the left side of the Knowledge-Builder:

• Global context menu: Provides actions for administrative purposes
• Global settings: Contains user-changeable settings or overall settings that can be changed
by the administrator only

• New window: Useful for opening a selected item (e. g. import mapping, view configura-
tion...) in a new dialog window.

Advantages:

View doesn’t get lost when another item is chosen in themain window of the Knowledge

Builder

View is opened without organizer, thus offering more display space

1.1.1 Global context menu

Change password

For the logged in account (non-administrative and administrative), this option provides

changing the backend password for accessing the Knowledge Graph by means of the Knowl-

edge Builder.

Technical Handbook 5.8

8/488

Recently closed windows

Since i-views 5.4, this feature is included as standard in this menu. Recently closed windows

can be reopened again without the need to search for the respective element view.

Tools

The tools actions provide several functionalities:

• Volume information: Shows a dialog window with detailed information about the
amount of types and instances of the Knowledge Graph and the size of the volume

in which the Knowledge Graph is stored.

• Script messages: When using or debugging JavaScript, the script messages dialog can
be used for displaying feedback returned by the $k.log() method in the script itself.

Note: The visibility of script messages depends on the configuration of the bridge.

• RDF: Provides the options "RDF import" and "RDF export". For more information, see
Chapter 1.5.4 "RDF-import and -export".

• Exports: Provides export options concerning JavaScript-API, viewconfig JSON-schema,
REST-API as OpenAPI 2.0 and KScript XML Schema.

• Neo4j: Provides Neo4j export of the Knowledge Graph.
• Dev Service: By means of the DEV Service, the i-views browser extension tool can
be used to open the respective element/view/panel of the viewconfiguration in the

Knowledge Builder by right-clicking onto the relevant part in the browser. The i-views

browser extension is an extra which is available upon request. Pay attention that several

Knowledge-Builders cannot use the DEV Service at the same time if they use the same

DEV Service port as specified in the global settings.

Technical Handbook 5.8

9/488

Administrator

• Flush client caches: This action triggers in all tools connected to this graph the inval-
idation of caches. In normal operation caches should be invalidated automatically. In

rare cases the invalidation fails, this action can trigger it manually.

• Revoke admin rights: This option allows an administrative user to revoke the own ad-
ministrative access in order to test rights management configuration in the Knowledge

Builder. The administrative access can be restored again by deactivating the option.

• Lookup semantic element with ID: For analyzing messages returning a semantic ele-
ment ID (= "frame ID"), the ID can be input here to determine the corresponding seman-

tic element.

• Lookup registry key: Offers search for registered objects within the Knowledge-Builder
(e. g. registered queries, scripts or types).

• Audit log analysis
• Update REST interface: Global available action for updating the REST interface, serves

as substitute when local REST update button is not present (visible) at themoment.

Technical Handbook 5.8

10/488

• Rebuild view configurations: Global available action for updating the viewconfigura-

tion, serves as substitute when the local viewconfiguration update button is not

present at the moment.

• Edit configured editors: If detail editors are configured as a view for elements of the
Knowledge Graph, they can be administered here in one space.

• Tool window: Provides an overall avalilable tools menu for often needed actions. This
comes in handy when many windows are opened at the same time:

About

Recalls information about configuration, licensing and components of the Knowledge Graph

volume as available in the login window.

Exit

Exits the Knowledge Builder.

Technical Handbook 5.8

11/488

1.1.2 Personal settings

Personal settings are available and adjustable for the logged in Knowledge Builder user ex-

clusively. The options are described in the following subchapters in detail.

1.1.2.1 Folder

• Show folder elements in the tree:
Determines whether the content of the folder is displayed as subnode in the folder

tree. This option can be useful to improve clarity of the tree in case of many folder sub

elements.

• Folders hide siblings
Should all siblings folders become invisible while a folder is opened.

• Size of the query result folder:
Number of search result sets of the structured queries that have been recently executed

within the KB. The search result set will then be listed within FOLDER > Query results.
A search result set entry consists of the timestamped search result list, containing the

found semantic elements which can be display in the graph, including their causes. Re-

ducing the size will take effect when executing the next query.

• Continue query when navigating to another folder

Technical Handbook 5.8

12/488

• Show folders also on upper level that are sorted into subfolders
• Show registered objects without public ID

1.1.2.2 Windows

The windows settings determines the behaviour of the Knowledge Builder itself and its dialog

windows.

• Center windows: New windows will always be opened in a centered position.
• Keep window positions: Reopens the same view in a window with the same window
position.

• Cascade windows: Stacks all windows of the same type in a cascading manner so that
all their titles can be seen at once.

• Bring existing window in front, do not open new window: Reuses windows if they
are already open, preventing the increase of opened windows for clarity reasons.

• Window color for this session: If several Knowledge Builder are opened at once, this
option helps to distinguish between the different Knowledge Graphs by setting a tem-

porary color of the window frames per Knowledge Builder per session:

• Open newwindows for this session always on screen of primary window: If several
screens are used, a new window always is opened on the main screen.

• Show information about volume and server in the window title:
For distinguishing between the windows of different Knowledge Graphs from different

Knowledge Builder, the Knowledge Graph volume name and the server will be shown in

the title of all opened windows. Serves for the same purpose of clarity like setting the

window color.

Technical Handbook 5.8

13/488

1.1.2.3 Editors

• Group starting at [...] items: This option leads to properties of the same type being
bundled into a dropdown accordion if the given number is reached.

• Remember and restore last selected tab: Allows the detail editors being displayed
with the same tab selected as in a previous access during the session.

• Write back changes immediately: This option takes effect on the backend (Knowledge
Builder) only. When activated, element properties are written to the Knowlede Graph

immediately in order to validate them against schema rules first before applying the

changes.

If disabled, properties can be edited and the changes are written to the graph using the

additional "Apply" button, which is displayed at the bottom of the editor view.

For the web frontend, (buttons with) actions of the action type "validate" and "save"

serve this purpose.

• Type selection switch from tabs (top) to list (left) after [...]: When the relation target
selection dialog is openend due to editing a relation, the relation targets are not shown

separated by tabs on the top edge but in forms of categories listed on the left side of

the dialog.

Technical Handbook 5.8

14/488

1.1.2.4 Structured query

• Show condition labels: If activated, query labels for properties are shown additionally
to the symbol:

• Show condition labels inlined if possible: If enabled, relation targets and attribute

Technical Handbook 5.8

15/488

values are shown inline to their property types:

• Always show finder numbers: Within structured queries, all elements are identified
by means of an inherent numbering system. However, the numbers only will be shown

when needed for building the query or when adding result columns to the results list.

When this option is enabled, the numbering will keep persistent:

• Show access rights checks: Shows additionally the associated access rights concerning
the particular property.

Technical Handbook 5.8

16/488

• Show message for the search definition:
This option enables messages for comments, warnnigs and errors to be shown at the

right side legend of the structured query. Note: Besides that, the local option "Suppress

warning" is available via context menu for each query label.

1.1.2.5 Graph

The graph options are for the graph editor within the Knowledge Builder. For settings

about the graph in forms of the net navigator component, see chapter 3 "vcm-plugin-net-

navigator".

Technical Handbook 5.8

17/488

• Show bubble help with details
Shows further information about the element on mouse-over:

• Auto hide nodes
• Auto layout nodes
• Node alignment
• Use Cairo library to display the graph
• max. nodes: As in the graph editor itself, this option determines the maximum amount
of nodes that can be expanded or retracted via a relation without opening a dialog for

selecting the relation targets.

• max. label length: Defines the number of letter a node label can have without being

Technical Handbook 5.8

18/488

shortened by an ellipsis ("...")

• View: Determines the icon size of the nodes.
• Legend configuration: Normally the graph editor legend only shows either the types
which elements are displayed momentarily in the graph editor or types that have been

added momentarily to the legende via the context menu. If certain types always have

to be shown initially, thay can be specified here.

1.1.2.6 Search field

For the Knowledge Builder search, queries from within the working folder or the private

folder can be added by drag&drop. To administer the added queries (e. g. removing them),

the search field settings are used. Added queries are available in a dropdown selection when

clicking on the query-button next to the search field.

1.1.2.7 Font size

This option allows the permanent setting of the font size within the Knowledge Builder. When

changing the font size, an example text is shown. Changes only take effect after restart of

the Knowledge Builder.

Technical Handbook 5.8

19/488

1.1.2.8 View configuration

The view configuration options take effect on the behaviour of the Knowledge Builder view

configurations exclusively. Options for the view configuration of the web frontend are con-

figured by means of the viewconfiguration mapper settings.

• Hard coded / Configured:
For the folder structure within the organizer of the Knowledge Builder, type-dependent

view configurations can be specified. The options "Hard coded" and "Configured" there-

fore allow switching between the default Knowledge Builder view configuration and the

customized view configuration. If certain types have a customized view configuration

which are defined for both the detail view and the folder structure, the folder structure

view will have priority when the view confguration is switched to "Configured".

• Beginner/Expert:
Concerning the viewconfiguration mapper, two kinds of user oriented views of the view-

configuration mapper itself can be selected: "Beginner" splits up the configuration tabs

of the detail editors into "Configuration" and "Extended", "Expert" shows all configura-

tion options at once.

Technical Handbook 5.8

20/488

1.1.2.9 Keyboard shortcuts

For the ease of use, custom shortcuts can be defined for the actions as shown in the following

image:

Technical Handbook 5.8

21/488

Often there are also inherent shortcuts available. If applicable, these shortcuts are described

in forms of a Shortcut note in the relevant chapter.

An overall principle of shortcuts within the Knowledge Builder: The combination of Ctrl + Click

removes items (e. g. elements from structured queries or proerties in the detail editor) or

makes them draggable (e. g. drag&drop of semantic elements from the Knowledge Builder

into the graph editor).

Within JavaScripts, elements assigned by internal names can be invoked with Ctrl + o (pro-

vided a registry key or a configuration name has been given to the element so that it actually

can be referenced). Eqiuvalent terms within one script can be browsed easily by marking the

term through double-clicking it and then by pressing Ctrl + g.

1.1.2.10 Timeline

The timeline feature allows configuring a timeline view for the Knowledge Builder by means

of a structured query. For the timeline, several element types can be chosen as a dimension

for the timeline for their instances to be displayed according date values, flexible time values

or time intervals. The timeline view then needs to be configured as view configuration for the

Knowledge Builder to be applicable.

Technical Handbook 5.8

22/488

1.1.2.11 Dev tools

These options allow the setting of the port used for Dev services and if the Dev service is to be

started automatically when the Knowledge Builder is started. When using several Knowledge

Builder at the same time, the corresponding Dev services only can be used in parallel when

they are given different ports.

Technical Handbook 5.8

23/488

1.1.3 System settings

The system settings are available for accounts with administrator status only and allow over-

all configuration of system-wide settings for the Knowledge Builder.

1.1.3.1 Folder

The folder options are for optimizing the list views according specific use cases when dealing

with large amount of data - thus improving usability by limiting additional features which

otherwise are active by standard.

• Maximum size of query result: Determines the maximum amount of hits that will be
processed and rendered for query results.

• Maximum number of results in objects lists: Determines the maximum amount of
objects that is displayable for an object list. If the amount exceeds the limit, a message

will be shown accordingly in the objects list instead of the listed objects.

• Free assortment up to number of results: The entries of object lists can be assorted
by means of the column header actions and filtering options. For large amounts of

objects, the assortment can be disabled to prevent unnecessary load.

• Auto query up to object count:
Determines the amount of list objects up to which the table queries the list results auto-

Technical Handbook 5.8

24/488

matically. If the number of objects to be shown in the object list exceeds the given limit,

the query for rendering the table will only start if the search button is clicked by the

user. Additionally, for object lists within the KB everey table configuration has separate

options for activating the query automatically (tab "KB").

1.1.3.2 User

This option category administers the backend users that have access to the Knowledge Graph

via the Knowledge Builder.

• Create: Creates a backend user for the Knowledge Builder.
• Associate: Associates the backend user to a frontend user account object.
• Drop association: Removes the association of the frontend user account object from
the backend user account.

• Change password: Allows changing the own password or resetting the password of an-
other backend user. Additionally a password change can be enforced for the first/next

login.

• Logout: Logs out the selected user.
• Delete: Deletes the selected user. Caution: Deleting the own user is also possible,
leading to an immediate deletion and logout!

• Rename: Renames the selected user.

Technical Handbook 5.8

25/488

• Message: Sends a message to the selected user, similar to sending a message via the
community section on the lower left corner of the Knowledge Builder. If the person

is not available because not logged in, a message can be sent here nevertheless. The

message will be displayed to the user at next login.

• Administrator: Determines if the selected user is an administrator.
Note: In order to enable non-administrative access to the Knowledge-Builder, a dedi-

cated KB folder structure has to be configured in advance which provides access to the

relevant content and functions.

• Password change: Enforces a password change for the selected user at next login.
• Private: Shows the content of the private folder of the selected user account.
• Administrator: Shows the amount of user accounts with administrator status.
• User: Shows the number of user accounts with user status.
• Active: Shows the number of currently logged in users/administrators.

1.1.3.3 System accounts

System accounts are needed for authentication of external services that communicate via

TCP/IP and services that communicate via the REST interface (e. g. bridges for webfrontend).

• Create: Creates a system account; after specifying a name, a token will be shown only
once for copying it for further usage (e. g. for bridge *.ini files).

• Update token: Updates a token and shows a suggestion once. Here a token value can
also be entered manually.

• Test token: Allows testing if a token string is valid.
• Delete: Deletes the selected system account.
• Refresh: Refreshes the current system account view.
• Show user accounts: Shows the user accounts additionally to the system accounts.

Technical Handbook 5.8

26/488

Technical Handbook 5.8

27/488

1.1.3.4 Rights

• Access rights activated: The access rights system and its access rights checks are only
activated if this option is enabled. The access rights system comprises the access check

of web-frontend users.

• User type: Specifies which type is used for access rights checks. Objects of this type
can be assigned as account-instances to a backend users in the administration section

"User".

1.1.3.5 Trigger

This option enables/disables the trigger system.

Note: The trigger section only is available within the TECHNICAL part when triggers are ac-

tiveted via this option in the global settings.

Technical Handbook 5.8

28/488

1.1.3.6 Top types

Top types can be administered her. Each top type comprises one separate Knowledge Graph

within the Knowledge Builder, shown as separate entry in the organizer of the Knowledge

Builder.

By standard, properties are handled separately for each top typ and isolated from one top

type to another, but can be accesed by queries nevertheless.

Each top typ is a subtype of the overall "Top-level type" from the core Knowledge Graph.

Technical Handbook 5.8

29/488

1.1.3.7 Languages

When the value of a given translated attribute is not present in the sessions’ current lan-

guage, this list defines the order of languages which are to be used as replacement values.

Technical Handbook 5.8

30/488

Technical Handbook 5.8

31/488

1.1.3.8 Locking

Technical Handbook 5.8

32/488

1.1.3.9 Print configuration

Technical Handbook 5.8

33/488

1.1.3.10 Registry

Strict conventions for registry keys: The conventions apply when creating a registry key

and e. g. in case of an XML schema transfer between volumes by means of the admin tool.

The strict conventions are as follows:

• All 26 letters of the ASCII code table (small letters and capital letters as well)
• Signs period ".", underscore "_" and dash "-"
• The first sign should be a letter

Note: The conventions are case insensitive, which means that a distinction of registry keys

by small letters and capital letters is not possible. Example: "myVolume.myQuery1" and

"myVolume.MYQuery1" cannot be used within the same volume. This also applies to the

XML schema transfer from one volume to another.

Apply to internal names: If enabled, the conventions also apply to internal names.

1.1.3.11 RDF

The RDF options comprise the settings for base URL, qualifier and additional namespaces

that come into account for identification entry nodes when importing or exporting RDF files.

Note: The additional namespaces are for export only.

For more information, see chapter "RDF-import and -export" of the users’manual.

Technical Handbook 5.8

34/488

Technical Handbook 5.8

35/488

1.1.3.12 Certificate authorities

Technical Handbook 5.8

36/488

1.1.3.13 SMTP

Technical Handbook 5.8

37/488

1.1.3.14 LDAP authentication

Technical Handbook 5.8

38/488

1.1.3.15 Maintenance

Technical Handbook 5.8

39/488

1.1.3.16 Client performance analysis

1.1.4 Index configuration

The configuration of indexes for semantic elements within the Knowledge Builder can be

specified here. Furthermore, already configured indexers can be applied for each kind of

element via the detail editor of the respective element type.

Index filter

Index filters are needed for fulltext query indexes, comprising the settings for tokenizing,

filtering and splitting query strings.

Technical Handbook 5.8

40/488

Indexes

• Metrics: The metrics comprise classified entries about the amount of objects, leading
to performance improvement in queries. Dependent from the extent of changes within

the Knowledge Graph (creating/removing semantic elements), the metrics have to be

synchronized from time to time.

• System: The system index is reserved for system properties (relation and attributes for
core functionalities); they are persistant and cannot be changed.

• Further indexes: In most cases, these are the pluggable indexes which can be built up
according individual needs.

Technical Handbook 5.8

41/488

1.1.4.1 The index-report

The index-report analyses which indexings are necessary. Comparing this "demand" to the

actual indexings will show missing and unnecessary ones. The index-report analyses struc-

tured queries, search-configurations, view-configurations and scripts. Since scripts are only

analysed regarding their references, it is impossible to determine the usage of the referenced

elements.

Note: It is possible for structured queries to need rarely used properties because of inher-

itance. These properties do not need to be indexed but the structured query itself will still

show a warning.

Where to find the index-report

Admins can find the index-report in the kb settings under "Index configuration". At first you

can see the "simple view". Using the buttons in the top right, you can switch to the "detailed

view" and the settings page.

When opening the index-report it immediatly starts its analysis. It will show which area is

currently being analysed and how it got to which property.

Note: For larger graphs the analysis may take a while.

Technical Handbook 5.8

42/488

1.1.4.1.1 The simple view

All propertytypes that were scanned by the analysis are listed here. The table shows the

name (Property type), the kind of property type (Type), the domains (Domains of Definition)

and the number of suggested actions (# Actions) consisting of adding indexings (# +) and

removing indexings (# x). A property type can be opened by double clicking its row.

All indexings of a property type can be seen on the right. Suggested changes have a "+" or

"x" in front of the index name. "+" means that this index should be assigned to this prop-

erty type and "x" means that this indexing can be removed as it is unnecessary. Using the

corresponding buttons on the right, selected indexings can be added or removed.

In the settings page you can change when an index should actually be added when clicking

the "+".

Below this list, you can see where the analysis found missing indexings of a selected index

that is not already assigned to the property type (meaning those with a "+" in front). Upon

selecting one of these usages the details of how the analysis got there is shown below and

every step can be opened by double clicking it.

The list of propertytypes can be filtered using the input field below. The filter applies to the

name of the property type, the type and the defined domains. You can also use +/x/# a

number to filter for propertytypes with that number of suggestions to add or remove indices

or total suggestions.

If no action should be suggested for an index, property type or usage, you can create an

exception by clicking the "No entry" (-) button.

Creating an exception

Exceptions define which Property types, Idexes or referencing elements should be ignored

by the analysis.

When creating an exception you can choose wether the usage of the property type or index

should be ignored. Additionally you can choose specific steps. A few examples for excep-

tions are: "No indexings for queries in script xyz", "Ignore property abc", "Ignore index ijk"

Technical Handbook 5.8

43/488

or all at once "in script xyz ignore index ijk for property abc". Exceptions can also prevent

suggestions are made for specific property types. Additionally suggestions for a whole index

can be prevented or a property type and index can be removed from the list of suggestions.

Obviously there are no steps for unused indexings.

Every exception needs a comment describing its intention.

Exceptions also prevent the check wether an indexing is necessary.

1.1.4.1.2 The detailed view

This view answers why a specific index is suggested for a property. Instead of properties

the main table contains the individual index requests. Additionally it has new columns: The

number of causes because of which an index is suggested, milliseconds (as measured by the

performance analysis) and a tag that can have the values "Used in query" (used in registered

query), "Used in script" (used in registered script), "Used in Mapping" (used in registered

tablemapping), "View configuration" (used in the view configuration) and Performance (used

in the performance analysis). If a property was found via a starting point, that was configured

in the options, the tag is "Query", "Script" or "Identifier" depending on the type of the starting

point. "Identifier" is used for RDF-Systemproperties as well.

All references regarding a request are listed under "Reasons" on the right.

All suggested actions of a request are listed in the bottom left.

Unnecessary indexings are listed in the bottom right under "General actions".

In both of the tables of actions you can select one or more actions and execute them via the

"Play"-button above the tables.

1.1.4.1.3 Settings

The settings can be used to configure what gets analysed and what is suggested as a result.

Technical Handbook 5.8

44/488

Manually configuring startingpoints

If there are scripts that are only used via the batch-tool but should still use indexes, they

can be added as a startingpoint for the analysis: On the left side under "Enter internal

name or registry-key" you can specify single or even multiple elements using wildcards (eg.

"all*base*"). Additionally you need to specify if the startingpoint is a script, query or type.

Once the definition is done the startingpoint can be created by pressing the "Add starting-

point" button. Obsolete startingpoints can be selected and then deleted by clicking the "Re-

move selected startingpoint" button.

Exceptions

The exceptions that were created in the simple view can be managed in the bottom right.

They can be removed ("Remove exception") or the configured property ("Edit property conept") or

usage ("Edit usage") can be shown.

Miscellaneous Settings

Setting Description

Additionally show all indexed properties

(Default: off)

Additionaly shows properties without sug-

gested actions.

This setting will only take effect after the

next scan.

Rescan after changes

(Default: off)

Automatically start a new scan after execut-

ing a suggested action.

Scan view-configuration

(Default: on)

Analyses the view configuration if present.

Technical Handbook 5.8

45/488

Scan registered queries

(Default: on)

If turned off, registered queries are not

scanned.

Scan registered mappings

(Default: on)

If turned off, registered mappings are not

scanned.

Scan registered scripts

(Default: on)

If turned off, registered scripts are not

scanned.

Include performance-analysis

(Default: on)

If measurements of the performance-

analysis are available (see client-analysis),

they will be used as startingpoints.

Only show properties with analysed

performance

(Default: off)

If no measurements are available for a

property, ignore its usages.

(Can only be activated if the performance-

analysis is included.)

Check all properties

(Default: on)

Also takes indexings into account, that were

not scanned by the index-report, regarding

their necessity.

Maximal number of targets for a collection-

index

(Default: 10)

Relations with few targets should have a

specific index. Usually this affects relations

to catalog-values. This integer defines the

threshold for such indexes.

Minimal occurances to index

(Default: 50)

Properties with few occurances don’t need

an index. This integer defines the threshold

for suggesting an index.

When adding an index:

(Default: Synchronize immedietly)

Defines what actually happens when

adding a indexing.

Options:

• Synchronize immedietly
• Mark synchronisation required
• Add sync job

Ignore properties of system-components

(Default: on)

Indicates wether to scan properties of

system-components aswell.

Only visible to developers.

Prevent removal of indices for uniqueness

(Default: on)

Prevents the removal of indices for unique-

ness.

Only visible to developers.

1.1.5 Configuration file kb.ini

As for every i-views product, an *.ini file can be created for the Knowledge Builder. In the

following, exemplary excerpts for the Knowledge Builder configuration file are listed:

Caching

Technical Handbook 5.8

46/488

; pre-fill corresponding fields in the login window
host=demo-server.empolis.com
user=peter
volume=demo
; configure logging if needed
logTargets=kb-log
; activate and configure file caching
; file caching speeds up data loading in subsequent sessions
cacheDir=cache
; maxCacheSize sets the size limit of the file cache (in MB)
; default is 50 (MB)
maxCacheSize=200
; the language parameter forces the kb to use the given language
; without this setting, the language is specified by the OS
; possible values are "eng" und "ger"
; fallback is "ger" if the OS language is unsupported
;language=eng

[kb-log]
type=file
file=kb.log

1.2 Access rights and triggers

This attribute handles the checking of access rights and triggers:

• Access rights regulate which operations on the Knowledge Graph may be executed be
specific user groups. They are defined in the rights system in i-views. The rights system

is located in the section Technical > Rights.

• Triggers are automatic operations that are triggered on a certain event and execute the
corresponding actions. The Trigger section is located under Technical > Trigger.

The rights system and triggers are initially not activated in a newly created Knowledge Graph.

These areas have to be activated before they can be used.

The procedure for creating rights and triggers is basically identical. Filters are required that

check if certain conditions are met or not. If these conditions are met, the rights system

grants or denies access, and a log entry is made or a script is executed for triggers. In the

rights system, the arrangement of filters is referred to as rights tree while that for triggers is

called trigger tree.

Tip: For straight-on success in creating adequate query filter conditions based upon the

operation, please check the table in chapter 1.2.5 "Operations". In principle, the operations

filter work in an "AND" logic, leading to the requirement that all conditions of an operation

filter and all conditions of the subcomponents of the operation filter have to be fulfilled.

Therefore, it is recommended to choose the most precise condition.

Technical Handbook 5.8

47/488

1.2.1 Check of access right

We use rights to regulate user access to the data in the Knowledge Graph. The two basic

objectives enabled by the rights system are:

• Protection of confidential data: Users or user groups may only see data that they are
allowed to read. This ensures that secrecy and confidentiality restrictions are applied.

• Work-specific overview: Certain users only need a section of the data of a model for
their work with the system. The rights system enables them to display only those ele-

ments that they need in order to complete their tasks.

The i-views rights system is very flexible. It can be configured precisely for different require-

ments of a project. By defining rules in a rights tree, consisting of individual filters and de-

ciders, a graph-specific configuration of the rights system is created. There are many options

for compiling these rules for the rights system, which generates even more differentiated

rights. It is not possible to list all possible combinations of configurations; this requires con-

sulting in individual cases.

How does the rights system work?

Access rights in the system are always checked when a user executes an operation on the

data. The basic operations are:

• Read: An element is supposed to be displayed.
• Modify: An element is supposed to be changed.
• Generate: A new element is supposed to be generated.
• Delete: An element is supposed to be deleted.

If the access right is supposed to be changed in a certain access situation, the Rights tree is

processed until a decision for or against access can be made in this situation. The Rights tree

consists of conditions that are checked against the access situation. To check the conditions,

filters are used which filter the elements of the Knowledge Graph and operations. Deciders

are located at the end of a subtree of filters in the rights tree. These deciders either allow or

prohibit access.

In relation to the access situation, aspects are selected which are used as the condition for

allowing or prohibit access. In access situations, the following aspects are often used for the

decision:

• The operation (generate, read, delete or modify)
• The element that is supposed to be accessed
• The current user

It is possible that only one aspect of the access situation is selected as a condition but it is

also possible to query a combination of the aspects listed.

Example: "Person A [user] is not allowed to delete [operation] descriptions [element]”.

1.2.1.1 The activation of the rights system

In a newly created Knowledge Graph the rights system is deactivated by default. Before it

can be used, it has to be activated in the settings of the Knowledge Builder.

Instructions for activation of the rights system

Technical Handbook 5.8

48/488

1. In the Knowledge Builder, call up the Settingsmenu and select the System tab. Select the

Rights field there.

2. Place a checkmark in the Rights system activated field.

3. In the User type field, specify the object type whose objects are the users of the rights

system. This is usually the “Person” object type. (Type must not be abstract.)

4. Once you have connected the i-views knowledge portal, enter a user (object of the pre-

viously defined person object type) in the Standard web user field.

Before activation of the rights system, the folder is called Rights (deactivated). Once the rights

system has been activated, the folder is called Rights. When the rights system is deactivated,

checks of the access rights are no longer performed. However, the rules defined in the rights

tree are retained and used again after renewed activation of the rights system.

Please note: If you access an element from the web front-end without special log-in, the

person specified under Standard web user is used. It is common to create a fictitious person

called “anonymous” or “guest” here.

To ensure the rights system also functions in the Knowledge Builder, the user accounts of

the Knowledge Builder must be linked to an object from the Knowledge Graph. The user

account can only be linked to objects of the type for which activation of the rights system

was specified in the user type field.

The link is generally required for using the operation parameter User in query filters, or for

using the access parameter User in structured queries when the rights system or the search

is not executed in an application, but rather in the actual Knowledge Builder.

Instructions for linking Knowledge Builder users to objects of the person type

1. Open the Settings menu in the Knowledge Builder and select the System tab. Select the

field User there.

2. Select the user who is to be linked. Link can be used to link the user to a person object

that is not yet linked to a Knowledge Builder account.

The Unlink function results in the Knowledge Builder account link to the person object

is canceled.

Please note: The user currently logged in cannot be linked.

In general, users with administrator rights may perform all operations, regardless of which

rights were defined in the rights system. The definition as administrator is also implemented

in the Settingsmenu in the User field on the System tab.

1.2.1.2 The rights tree

Traversing the rights tree

The rights tree is comprised of rules that are defined in a tree. The branches of the tree,

also referred to as a subtree, are comprised of the conditions that should be checked. The

conditions are defined in the system as filters that are nested in each other. The system

works through the tree from the top to bottom when the evaluation occurs. When a condi-

tion matches the access situation, then the check continues with the next filter in the sub-

tree. This filter is, in turn, checked. This is implemented until the end of the subtree, when

there is an access right or denial. If a condition does not match the access situation, then a

switchover to the next subtree occurs. When the system encounters an access right or denial

when working through the rights tree, the rights check ends with this result. The branches

(subtrees) of the tree are therefore worked through successively, and the tree is “traversed“

Technical Handbook 5.8

49/488

until a decision can be made.

Filters and deciders are nested in each other in the form of folders, so that a tree construction

is produced that is comprised of different subtrees. A folder can have several subfolders

(several successor filters on one level), which produces branching in the rights tree. Folders

that are defined on one level are worked through successively (from top to bottom).

Structure of the rights tree

When creating the rights tree, it is important to group the rules in a sensible way because

once a decision as to whether access is allowed or denied has been made, no further rules

are checked. Hence, exceptions should be defined ahead of global rules.

The two main cases that you have to distinguish are:

• Negative configuration: Everything is allowed at the lowest subtree; denials are de-
fined above it.

• Positive configuration Everything is prohibited at the bottom, except for what is al-
lowed above.

The order of the subtrees is therefore crucial when creating the rights tree. The order of

the conditions in a subtree in contrast (whether we check the operation first and then the

property or vice versa) can be chosen freely.

You don t necessarily have to define all filter types to define a subtree of a rights tree. A

subtree consists of at least one filter and one decider. An exception is the last subtree which

generally consists of a decider only, which allows all remaining operations (which have not

been prohibited in the rights tree beforehand) or which prohibits all remaining operations

(which have not been allowed in the rights tree beforehand).

Example: rights tree

This basic example shows a rights tree consisting of a rights tree part and a default decider

that allows everything:

Technical Handbook 5.8

50/488

In the rights branch, the deletion or modification of the attributes name, duration and publication

date is prohibited. To do this, an operation filter is used that has the operations delete or modify

as the condition. Only these operations are let through by the operation filter. The next filter is

property filter that filters on certain properties. In this case, the attributes Name, Duration and

Publication date are filtered irrespective of the object or property on which these are stored. The

last node of the rights branch is the decider "Forbidden", which prohibits all access operations that

match the two preceding filters. If one of the two conditions does not apply to the access situation,

the default decider "Allowed" is executed.

This simple rights tree would look as follows in i-views:

Technical Handbook 5.8

51/488

Checking an operation using the rights tree example:

The left side shows the operation to be checked: Person A wants to delete the Description attribute.

The rights tree is depicted on the right side. The check of the condition of the first filter returns a

positive result because Person A wants to execute the operation Delete. In the rights tree, the next

filter of the rights sub-tree is executed. This is the property filter of the attributes, Name, Duration

and Publication date. The check of the filter returns a negative result because the Description is

not one of the filtered properties. Processing of the subtree is terminated. The next subtree of the

Technical Handbook 5.8

52/488

rights tree is processed next. This is already the default decider “Allow” which allows everything

that is not explicitly prohibited in the rights tree.

1.2.1.3 Decision maker in the right tree

Deciders are always at the last position of a rights sub-tree. The combination with filters

is used to determine access situations in which access is explicitly allowed or denied. If a

decider is reached while traversing the rights tree, the check of rights is answered with this

decision. The operation to be checked is then either allowed or rejected. The rights tree is

then not checked any further.

Sym-

bol

Access right Description

Access

granted

Access is granted in the access situation to be checked.

Access denied Access is not granted in the access situation to be checked.

In general, there are two different deciders, a positive one called "Access granted" and a

negative one called "Access denied".

Note: Like all labels of the rights tree, "Access granted" and "Access denied" are standard

labels which can be modified if needed.

Instructions for creating a decider

1. In the rights tree, choose the position at which you want to create the decider.

2. Use the buttons and to create new deciders as subfolders of the currently selected

folder.

3. Assign a name to the folder.

1.2.1.4 Composing rights

To define rights, filters and deciders are combined in the rights tree. The Filters chapter

explains the different filter types and how they can be used. The deciders Grant access or

Deny access each represent the last node of the subtree of the decision tree. If the decider is

reached, this decision terminates the traversing of the rights tree.

The following functions are available for defining rules in the rights system:

Sym-

bol

Function Description

New operations filter A new operation filter is generated.

New query filter A new query filter is generated.

New property filter A new property filter is generated.

Technical Handbook 5.8

53/488

New script filter A new script filter is generated.

New lock filter A new lock filter is generated.

New organizing folder A new organizing folder is generated.

Grant access A positive decider that grants access is generated.

Deny access A negative decider that denies access is generated.

Organizing folders can be used to structure rights in a meaningful way. They do not affect

the traversing of the rights tree. Their only purpose is to group large numbers of rights into

subtrees of the rights tree that have related content.

Changing the arrangement of folders in the rights tree

In order to sort the filters and deciders in the rights tree into the right order, right-clicking

opens a context menu:

The filter or decider can be renamed, deleted and exported in this context menu, and its

position in the rights tree can be changed. If two folders (filters or deciders) are on the same

level, the Upward or Downward function can be used to shift the folder further to the front

or the back in the rights tree. To the top and To the bottom shifts the folder to the first or last

position of the level in the rights tree accordingly.

If folders are to be nested in each other, meaning the level in the decision tree be changed,

this can be done using Drag&Drop.

Assembly of rights

Assembling filters and deciders in the rights tree creates a large number of possible combi-

nations for defining rights. By principle, there are 3 different procedures for defining rights:

• Definition of rights for every possible access situation
• Positive configuration
• Negative configuration

Because defining access rights for every possible access situation is a very complicated pro-

cedure, one of the two other means of configuration is generally used. They are explained in

the following two sections.

Technical Handbook 5.8

54/488

1.2.1.4.1 Positive configuration of rights

If rights are defined in the rights tree which only allow specific accesses and deny all other

accesses about which nothing is specified, then this is referred to as a positive configuration

of the rights tree. Rules are defined in each subtree of the rights tree, which allow specific

operations. All operations to be checked traverse the rights tree: If the operation to be

checked does not match the conditions of the subtrees, it is rejected at the end of the rights

tree.

Example: Positive configuration

This example shows how a positively formulated rights tree might look like in the Knowledge

Builder:

Technical Handbook 5.8

55/488

The first rights subtree defines read access to the attributes name, duration and publication date.

The read operation is allowed for these attributes. The second rights subtree allows new objects of

the type song to be created. All other operations are generally denied at the end of the rights tree.

1.2.1.4.2 Negative configuration of rights

When rules are defined in a rights tree to reject specific operations and permit all the op-

erations that, after a check, are identified as not matching those operations, this process is

described as a negative configuration. Specific operations are prohibited in the subtrees of

the rights tree. If one of the operations to be checked does not match the conditions of the

subtrees, the operation is permitted at the end of the rights tree.

Technical Handbook 5.8

56/488

Example: Negative configuration

This example shows how a negatively formulated rights tree might look like in the Knowledge

Builder:

Unlike with a positive configuration, for example, the first rights subtree rejects the access rights

for deleting and modifying the Name, Length and Publication date attributes. The second rights

subtree prohibits deletion of the relation that links the songs to the album they are contained in.

All other operations may be executed.

Technical Handbook 5.8

57/488

1.2.1.4.3 Example: Each user is allowed to change and delete items that he has cre-

ated himself

What do you need to define this right in i-views? On the one hand, you need an operation

filter since this is about changing and deleting elements. On the other hand, the connection

between the user and the element on which the user wants to execute an operation must be

defined, which is only possible by means of query filters.

Operation filter

In the operation filter, the operations Delete and Modify were selected.

Query filter

In the query filter, “Relation created by” is selected with relation target “Person.” On the relation

target Person, the access parameter User was specified. The settings All parameters must apply

and Search condition must be met are selected. In this case, the operation parameter “Primary

Knowledge Graph element” was selected.

A question relating to the schema is: On which elements is the relation was created by de-

fined? There are different options for implementing this relation in a Knowledge Graph:

1. Definition on objects and types: The relation is only used on objects and types.

2. Definition on all elements: The relation is used on all objects, types, extensions, at-

tributes and relations.

In the first case, it makes sense to use the operation parameter “Primary Knowledge Graph

element” or “Superordinate element.” If you define the right using the superordinate ele-

ment, this does not apply only to the object itself but to all properties stored on the objects

that were created by the user. If you use the operation parameter “Primary Knowledge Graph

element,” the right also applies to all meta properties of the object.

In the second case, the operation parameter “Accessed element” is used because only el-

Technical Handbook 5.8

58/488

ements may be changed on which the relation was created occurs with the corresponding

relation target, the user.

Compiling the right in the rights tree

There are two different variants for combining the filters. If there are no branches in the

rights subtree, the order of the subtrees is not relevant.

The graphic illustrates the two possible combinations: Version 1 (left) first operation filter, then

query filter, version 2 (right) first query filter then operation filter, in both cases the decider “Al-

lowed” then follows last.

Recommendation: It makes sense to have the operation filter in the first position, which

makes it possible to create underneath it all other rights that filter on the same operation.

This creates a more simple, traceable structure in the rights tree.

Advanced right: Elements that were not created by the user may not be changed or

deleted

The right implies the denial for all elements that were not created by the user but we have

not yet expressed this in the definition of rights. To do that, we have to take into account the

Access denied decider during the creation of rights. If you look at both versions of rights and

combine these with a negative decider, this results in the following variants. However, the

two variants have different effects in the rights system.

If you add one decider Denied to each of the combination options presented above, the two ver-

sions are created: Version 1 (left) first operation filter, then query filter and decider “Allowed.” The

Technical Handbook 5.8

59/488

operation filter is also followed by a decider Denied in a second subtree. Version 2 (right) first

query filter then operation filter, and decider “Allowed.” In the version, the query filter is followed

by a second subtree with the decider “Denied.”

Effects on the different versions on the rights system

Version 1 (left)

• Allows modification and deletion of elements created by users themselves.
• Prohibits modification and deletion of all other elements.
• No statement is made in relation to all other operations.

Version 2 (right)

• Allows modification and deletion of elements created by users themselves.
• Prohibits all other operations on elements created by users themselves (e.g. read).
• No statement is made in relation to all other elements.

The items show that version 2 does not express the requested access right. Only version

1 formulates the desired access right: All users can modify or delete elements they have

created themselves and elements that were not created by the users may not be modified or

deleted.

1.2.1.5 Configuration of own operations

When the Rights folder is selected in the System area, the Saved test cases and Configure tabs

are available in the main window. A number of operations can be configured in the Configure

tab.

Technical Handbook 5.8

60/488

The configuration of custom operations is generally only used when the Knowledge Builder

is used with other applications. A number of operations are application-specific operations

that should be checked together. This is a matter of checking a chain of operations, and not

just an operation.

Instructions for the configuration of custom operations

1. In the Knowledge Builder, select the Rights folder in the System area.

2. Select the Configuration tab in the main window.

3. Click on Add to create a new operation.

4. In the windows that follow, enter an internal name and a description for the new oper-

ation.

5. The new operation is added as a user-defined operation.

6. User-defined operations can be deleted again using Remove.

Technical Handbook 5.8

61/488

1.2.2 Trigger

Triggers are automatic operations that are executed in i-views when a specific event occurs.

They help support work flows by automating steps that always remain unchanged.

Examples for the use of triggers:

• Sending emails due to a specific change
• Editing of documents in a specific order by specific persons
• Marking jobs as open or done on the basis of a specific condition
• Creating objects and relations when a specific change is performed
• Calculating values in a previously defined way
• Automatically generating the name attribute for objects (e.g. combining properties of
the object)

How do triggers work?

Triggers are closely related to the rights system. They use the same filter mechanisms in

order to determine when a trigger is initiated. The filters are arranged in a tree, the trigger

tree, which is structured like the rights tree. It consists of filters that are used to define condi-

tions for the execution of a trigger action. If an access situation occurs because an operation

is performed, and that access situation matches the defined conditions, the corresponding

trigger action is executed.

Trigger actions are in most cases scripts that, depending on the elements of the access sit-

uation, use them to execute operations. This makes it possible to automate steps that re-

main unchanged or perform intelligent evaluations on the basis of specific constellations in

the Knowledge Graph. Scripts can be used to execute any operations on elements that are

dependent on complex evaluations, and thereby ensure situation and application-specific re-

quirements for the Knowledge Graph. Most triggers are therefore usually project and Knowl-

edge Graph specific; a consultation should be performed for each individual case.

1.2.2.1 Activate trigger

In order to be able to work with triggers, the trigger functionality must first be activated in

the Knowledge Builder.

Instructions for the activation of triggers

1. Call up the Settings for the Knowledge Builder.

2. Select the System tab there, and the Trigger field.

3. Place a checkmark in the Trigger activated field.

A Limit for recursive triggers can be specified here. The default setting is “None”. Triggers that

call themselves are referred to as recursive triggers. This occurs when even operations in the

Knowledge Graph are implemented in the trigger script that, in turn, themselves match the

filter definition of the trigger.

Before activation of the trigger functionality, the Trigger folder in the technical area of i-views

is called Trigger (deactivated). The folder is renamed Triggers by the activation.

Note: If the current user is used in triggers (e.g. in query filters or using the corresponding

script function) and the user does not execute operations in an application, but rather in

the actual Knowledge Builder, then the Knowledge Builder user account must be linked to

Technical Handbook 5.8

62/488

a person object. The chapter Activation of the rights system explains how a link like this is

created.

1.2.2.2 The trigger tree

The trigger tree has the same structure as the rights tree. It is comprised of branches (sub-

trees), which are comprised of filters and triggers. The filters are the conditions that must be

checked for the trigger to be able to be executed at the end of the subtree when all conditions

to be checked beforehand have been satisfied.

The trigger tree is queried for the data when each operation is performed - the tree is “tra-

versed”. If a subtree applies to the access situation, then the trigger is executed. If the con-

dition of a filter does not apply to the access situation, then a switchover to the next subtree

occurs. Once the trigger action has been executed, traversal of the trigger tree continues, in

contrast to the rights system, which stops being worked through when an decider is reached.

In order to define that no other filters should be checked in the trigger tree after execution

of an action, the Trigger no other triggers button is used:

Sym-

bol

Function Description

Trigger no other triggers The traversal of the trigger tree is ended.

At the end of a subtree, no decider is available, in contrast to the rights system, but rather

actions are available.

Sym-

bol

Function Description

Define trigger A new trigger action is created.

The available trigger actions are:

• Enter log: A log entry is written.
• Execute script > JavaScript: A script file in JavaScript is executed.
• Execute script > KScript: A script file in KScript is executed.

Structure the trigger tree

The order in which you define the triggers when designing the trigger tree usually has no

effect on the performance of i-views. There are design recommendation for the rights tree,

but these cannot be applied to the trigger tree, as the trigger tree is further traversed after a

trigger action has been executed.

To provide a clearer structure for triggers, they can be collected in organizing folders. The

organizing folders themselves do not affect the traversing of the trigger tree.

Technical Handbook 5.8

63/488

Sym-

bol

Function Description

Organizing folder Organizing folder for grouping subtrees

Example: trigger tree

This example shows a trigger tree that combines the names of persons and concerts auto-

matically from properties of the objects:

This simple trigger tree begins with an operation filter and splits into two separate subtrees after

the operation filter. If either the modify or the create operation is executed, it is let through by the

operation filter. The persons subtree filters operations that are performed on attributes and rela-

tions of person type objects. If the operation affects either the first name attribute or the last name

attribute, it is let through by the property filter. The corresponding script that compiles the name

attribute of a person from their first and last name is executed. The second subtree also applies

to the modify or create operation filter. However, it filters attributes and relations that are saved

in company type objects. The property filter only lets operations through if they are performed

on the attributes or relations of the city, the street or the ZIP code. If these conditions apply, the

corresponding script that compiles the complete address string of the company is executed.

Technical Handbook 5.8

64/488

This is what this trigger tree would look like in i-views:

1.2.2.3 Create trigger

As described in the Trigger tree section, triggers consist of filters and trigger actions. These

are combined in such a way that a specific trigger action is executed only when it is required.

The following functions are available in the trigger area:

Sym-

bol

Function Description

New operation filter A new operation filter is generated.

New query filter A new query filter is generated.

New property filter A new property filter is generated.

New delete filter A new delete filter is generated.

New organizing

folder

A new organizing folder is generated.

New trigger A new trigger action is created.

Trigger no other trig-

gers

A new “Stop” folder is created. It ends the traversing of the

trigger tree.

When creating triggers, you should consider two fundamental properties of the triggermech-

anism:

• Execution of a trigger script can cause further triggers to be triggered. This occurs if
operations in the Knowledge Graph are executed in the trigger script itself.

• After a trigger action has been executed, traversal of the trigger tree continues. All
trigger actions of the subtrees that apply to the access situation are executed.

1.2.2.4 Trigger actions

Trigger actions are used to perform intelligent operations in the Knowledge Graph, which, for

example, automate or support work flows. However, they are only executed when the access

Technical Handbook 5.8

65/488

situation and the links in the Knowledge Graph assume a specific state defined by the filter.

Instructions for the creation of trigger actions

1. Select the position in the trigger tree at which the trigger action is to be created.

2. Used the button to create a new trigger.

3. Select the action type from the list: Enter the log or execute the script (if you wish to

execute a script, select the script language).

4. The trigger is created as a subfolder of the currently selected folder.

Logging actions

In principle, there are three different possibilities for logging changes that have been initiated

by the trigger system:

• Log trigger: Special logging element that is used additionally to the respective trigger
element in order to log the trigger action itself.

Advantage: The log trigger can be added quickly to any script trigger, but an initialization

file (*.ini) needs to be configured before. The log trigger is described in the sub chapter

"Log trigger".

• Script trigger with output in forms of "$k.log()": Within any trigger script, entries for
logging can be added by means of the $k.log method.

Advantage: The log output can be defined in a highly customized manner, restricted

by the scope of the JavaScript API only. The log information is output within the "Script

messages" dialog and/or in the respective logfile as configured by the initialization file.

For more information, see the JavaScript API documentation.

• changeLog trigger: A predefined registry key for a string attribute in combination with
a JavaScript method can be used for logging. Advantage: Log entries will be created in

forms of a "changeLog" attribute directly attached to the respective semantic element

on which the changes take effect, depending on the definition range of the changeLog

attribute type. The changeLog trigger is described in the last sub chapter.

1.2.2.4.1 Script trigger

An operation parameter must be output for the script to be executed. In contrast to query

filters, only one operation parameter can be specified. Execution of the script starts on the

element contained in the operation parameter.

Time/type of execution

• Before the change: The trigger is executed before the operation is performed.
• After the change: The trigger is executed immediately after the operation has been
performed.

• End of transaction: The trigger is executed only at the end of the shared transaction.
• Job-Client: The Job-Client determines the time of execution.

Please note: Triggers that are executed for delete operations should preferably use before the

change as their time, as the element to be deleted will no longer be available otherwise. For

Technical Handbook 5.8

66/488

other operations, a more suitable time is after the change or end of transaction, as it is then

possible, for example, to add a property to the newly created element or automatically gen-

erate the name from various properties of an object if one or more properties were changed.

The import chooses the order in which the properties will be imported in i-views. Therefore a

trigger that is initiated during the import should not rely on the properties being available in

full.

Execute once only per operation parameter

If this setting is selected, the element selected in operation parameter is executed no more

than once per transaction. If this setting is chosen, the time of execution should be set to end

of transaction so that the final state of the element is used in the script.

Example: For persons, the name of the object is meant to consist of the first name and last

name. With this setting, the trigger is executed only once if the first and last names are

changed at the same time.

Execution does not initiate trigger

This setting specifies that the operations executed within a trigger cannot initiate any further

triggers. This setting can be used to avoid endless loops.

Continue to execute script in case of script errors

If this setting is active, an attempt is made to restart after an execution error and continue

with the execution of the script. This setting is predominantly useful for scripts that are

supposed to execute instructions that are independent of each other, and not for scripts

that build on previous steps of the script.

Abort transaction if trigger fails

This setting defines the termination behavior in the event of script errors. If an error occurs

while the script is being executed and this setting is active, all actions of the transaction are

reversed. If this setting is not active, all actions are executed apart from the ones affected by

the error. The original action that led to the trigger being called is nevertheless written to the

Knowledge Graph.

Execution during data refactoring

The term data refactoring describes operations for restructuring the Knowledge Graph, e.g.

Change type or Choose new relation target.

Caution: Data refactoring operations can, in some circumstances, initiate unwanted trigger

actions and, in some cases, even generate errors during execution of the script.

For this reason, it is possible to set for each trigger whether it is to be executed during data

refactoring.

Example for data refactoring: Reengineering to single-sided relation.

Changing a relation type from a double-sided relation into a single-sided relation causes a re-

saving of relation targets. Although this is not a factual change, this can trigger the execution

of a trigger script that originally was intended to react on relation target changes only.

Following processes are considered as data refactoring:

In the Knowledge Builder:

• "Choose new semantic element for property" (for attribute)
• "Choose new relation target" (at relation)
• Copying

Technical Handbook 5.8

67/488

• "Change subtypes into objects" (context menu "Reengineer")
• "Merge" (of nodes in Graph Editor)
• Relocating relations
• Change relation source/target in Graph Editor by means of Drag&Drop
• Converting relations from/to one-way relations

In general:

• Changing data storage of file attributes
• Changing relation source/target by RDF import

Deprecated:

• Behavior function "adsorbRelationTarget" (not needed anymore)
• Change relation source/target in edit view in web ui (pre version 5.4)

The function body for script triggers is created automatically.

The script has three parameters:

pa-

rame-

ter

$k.SemanticElement

/ $k.Folder

The selected parameter

ac-

cess

object Object with data of the change (new attribute value

etc.)

user $k.User User who triggered the change

The following example sets the attributes with the internal name “changedOn" / “changedBy.”

“Primary semantic core object" should be selected as the parameter here.

/**
* Perform the trigger
* @param parameter The chosen parameter, usually a semantic element
* @param {object} access Object that contains all parameters of the access
* @param {$k.User} user User that triggered the access
**/

function trigger(parameter, access, user)
{

parameter.setAttributeValue("modifiedAt", new Date());
var userName = $k.user().name();
if (userName)

parameter.setAttributeValue("modifiedBy", userName);
else

parameter.attributes("modifiedBy").forEach(function(old) { old.remove });
}

Technical Handbook 5.8

68/488

The parameter "access" may contain the following properties (varies in each operation):

Property Description

accessedObject Accessed element

core Core object

detail Detail

inversePrimaryCoreTopic Primary relation target

inverseRelation Inverse relation

inverseTopic Relation target

operationSymbol “read," "deleteRelation" etc.

primaryCoreTopic Primary semantic core object

primaryProperty Primary property

primaryTopic Primary semantic element

property Property

topic Superordinate element

user User (identical to “user” parameter of the function)

1.2.2.4.2 Log trigger

If the user would like to monitor or document the trigger functionality for when which trigger

was triggered and which operators were executed in the Knowledge Graph, log triggers are

suitable. The log is written to the respective log file (bridge.log, batchtool.log etc.) in the

application environment that the operation that triggered the trigger is performed in.

Lines of the log entry Current state of the Knowledge Graph

#pre before triggering

#post after triggering

#end at the end of the transaction

#commit when the transaction has been processed successfully

Log entries are used to retrace whether a trigger was executed in a specific access situation

that actually occurred, and what it did. In contrast to this, a test can be performed in the test

Technical Handbook 5.8

69/488

environment to determine whether a trigger would be triggered or not in a specific access

situation, without the specific access situation being performed.

The operability of the log trigger feature actually depends on how the logging is configured

by the respective *.ini file (kb.ini, mediator.ini, jobclient.ini).

Example: For logging the trigger actions when using a local Knowledge Graph volume wihout

mediator, a "kb.ini" file is needed with a minimum set of configuration parameters:

[Default]
logTargets = kblog

[kblog]
type = file
format = plain
file = kb.log

This initialization file creates a logfile called "kb.log" in the Knowledge Builder folder.

For more information about different configuration files, see the respective chapter about

"i-views services".

Instructions for the creation of log triggers

1. Select the trigger script that is to be logged in the trigger tree.

2. Using the button to create a trigger of type Logging in the trigger tree directly above

the script trigger.

Example:

Log entry that documents the change of the attribute e-mail using a trigger.

1.2.2.4.3 ChangeLog Trigger

If you want to monitor the activities that users perform on objects, you should set up a

changeLog trigger, also referred to as a change history.

For this purpose, you must first define a string attribute with the internal name “changeLog.”

This changeLog attribute must be defined for all elements for which it is to document user

activities.

Technical Handbook 5.8

70/488

Click “Open” to open the table showing who made the change, when they did so, what the

change is, to which semantic element it applies, and which value was used.

Note:

• Since operation filters like "create relation", "create relation half" or "delete relation half"
only apply to the relation origin (the semantic element itself), logging of changing re-

lation targets cannot be triggered. For this purpose, the trigger script can be used if

specified accordingly.

• Modifications in attribute values will be logged only when they are created (simultane-
ously when the attribute itself is created), but not when the attribute value is deleted.

The trigger must contain the operation filters that will log the change history, and the ele-

ments where the attribute is to be visible.

The trigger script looks like this:

/** * Perform the trigger * @param parameter The chosen parameter, usually a semantic element * @param {object} access Object that contains all parameters of the access * @param {$k.User} user User that triggered the access **/ function trigger(parameter, access, user) { $k.History.addToChangeLog(access,parameter); }

Example

A change log is to be saved in all objects in a Knowledge Graph. The aim is to log the modifi-

cation, creation and deletion of properties in the objects. First, an operation filter is created

that reacts to the operations “Delete attribute”, “Modify attribute value”, “Create relation”,

“Create relation part” and “Delete relation part”.

In the next step, a query filter was defined to determine the Knowledge Graph on which

operations are performed.

Technical Handbook 5.8

71/488

The “Superordinate element” operation parameter was added to the trigger script, because

it corresponds to the query filter.

The trigger rules (operation filter, query filter and trigger script) are located in the hierarchy

tree as follows due to their checking sequence:

1.2.3 Filter types

With the aid of filters, the conditions are defined in the rights tree or in the trigger tree to

allow access situations to be restricted when a decider or trigger should be executed. New

filters are created under the node currently selected in the tree. This way, they are nested in

each other.

The three filter types operation filter, query filter and property filter are available in the rights

system. In addition to the three basic filter types, the trigger area provides a specific filter -

the deletion filter.

There are different types of filters - when do we use which filter?

Sym-

bol

Filter Description

Operation filter Filters the operations; selection from list

Query filter Filters elements by means of structured query

Property filter Filters relations and attributes; selection from list

Technical Handbook 5.8

72/488

Delete filter Filters the deletion of elements

Operations can only be determined using an operation filter. Users can only be determined

using a query filter. Properties can be determined using either query filters or property

filters. The use of property filters makes sense when properties should be filtered regardless

of other properties in the Knowledge Graph such as relations to the user. Above all, when

large sets of properties are to be filtered, it is more straightforward and clearer to do so in a

list instead of in a structured query. If relations to the accessed element or to the user are to

be factored in, then a query filter must be used.

Instructions for creating a filter

1. In the rights or trigger tree, choose the position at which you want to create a new filter.

2. Use the buttons , , or to create a new filter.

3. The filter is created in the tree as a subfolder of the currently selected folder.

4. Assign a name to the folder.

1.2.3.1 Operation filter

To specify the operations for which an access right should apply or a trigger should be exe-

cuted, operation filters are required. By selecting the required operation it is possible to add

it to or remove it from the filter.

Technical Handbook 5.8

73/488

The operations are divided into groups. When you select the higher-level node of a group,

all lower-level operations are included in the filter. If, for example, you choose the Create

operation, the filter considers the operations Create attribute, Create extension, Create folder,

Create relation, Create relation half, Create type and Create translation.

The Operations chapter lists all available operations and also specifies which operation pa-

rameters can be used in combination. The various operation parameters are explained ac-

cordingly in the Operation parameters chapter.

1.2.3.2 Property filter

You can use property filters to filter attributes and relations. There are two different proce-

dures for using a property filter:

• Restriction on properties: Specify the properties to which the condition is supposed to
apply. Subsequent filters or deciders of the subtree are only executed if the access

property matches the selected property.

• Exclude the following properties: Specify the properties to which the condition is not sup-
posed to apply. If the access property matches one of the selected properties, subse-

quent filters, deciders or triggers are not executed.

You can use Add and Remove to select the properties listed below. All properties below can be

selected using All. None removes all selected properties. You can use the Edit field to call up

Technical Handbook 5.8

74/488

the Detail editor of the attribute or relation that is selected in the top selection field. The tabs

All properties, Generic properties, Attribute, Relation, View configuration and Knowledge Graph

are designed to help users find the filtering properties more quickly. The Knowledge Graph

tab shows all relations and attributes that the user has created.

1.2.3.3 Query filter

Query filters make it possible to include elements in the environment of the element that

is to be accessed. This allows not only individual properties, but also relationships between

objects, properties and attributes to be included in the rights or trigger definition. When

using query filters, it is necessary to specify an operation parameter to which the result of

the structured query is compared. All available operation parameters are explained in the

Operation parameters chapter.

There are two ways to define query filters:

• Search condition must be met: This setting is selected initially. If the search result of the
structured query matches the operation parameter, the condition of the filter is met

and subsequent filters, deciders or triggers are executed.

• Search condition must not be met: If the structured query returns the same element as
the access parameter as its result, the condition is not met and the check of the rights

or trigger tree switches to the next subtree. If the result of the structured query differs

from the result of the access parameter, the condition is met and the subsequent filter,

decider or trigger is executed.

The objects of the type at the top left that match the search condition are the result of the

structured query. These are compared to the element that is transferred by the operation

Technical Handbook 5.8

75/488

parameter. It is possible to use access parameters in the structured query. They can be used,

for example, to include the user, accessed element etc. in the query.

During selection of the operation parameter it is possible to configure whether

• all selected parameters must apply (All parameters must apply)
• or only one parameter must apply (One parameter must apply).

Please note: Initially, the setting All parameters must apply is selected. If, for example, the

operation parameters Accessed element and Primary semantic element are selected, the con-

dition is met only if the result of the structured query is both the accessed element and the

primary semantic element of the operation to be checked.

Example 1: Query filter in the rights system

A right should be defined that determines that already modified object may be read by ev-

eryone; unmodified objects, in contrast, may not.

In this example, the user "Person A" would like to read "Object A". This operation is now checked

by the rights system. A query filter has been defined in the rights system which checks whether the

object has already been modified. The structured query of the query filter searches of objects of

the “Subtype A” type, with the restriction that the attribute “modification date” is in the past. The

structured query delivers all objects that meet this condition. If "Object A" is one of them, then the

check by the filter returns a positive result and the folder that follows the query filter (with a filter

or decider) is executed.

In the case of the query filter, the search condition settings must be met, and “All parameters must

apply”must be selected.

Example 2: Query filter in the rights system

In most cases, there is a connection between the user who wants access and the objects

and properties that the user wants to access. An example of this would be: “Employees of a

department who look after a branch may edit all customers of this branch.” Another version

of this example that is illustrated below would be: “Users who maintain an object may edit

and delete this object.”

Technical Handbook 5.8

76/488

The left side shows a section of the Knowledge Graph: The object "Person A" is linked to the objects

"Object A", "Object B" and "Object C" via the relation "maintains". The inverse relation of “main-

tains” is “maintained by,” which exists between the objects Object A, Object B and Object C and the

object Person A, and is queried in the query filter. This relation in the Knowledge Graph represents

that one person maintains object data relating to "Subtype A".

Technical Handbook 5.8

77/488

In this example, user "Person A" wants to delete "Object A". The corresponding query filter delivers

all objects of "Subtype A" that were maintained by a certain user as the query result. The current

user is transferred to the structured query as an access parameter. The “Structured query” chapter

explains access parameters in structured queries. Hence the search in this access situation returns

all objects that were maintained by Person A. Since Object A is one of them, the query filter check

returns a positive result.

In this example, the access situation adds two aspects to the query filter: the object to be

deleted and the user. The query filter can thus be defined in two different ways. The object

is either transferred to the query filter as an accessed element and the user is used as the

access parameter in the structured query. Or the user is transferred to the query filter as

the operation parameter “User” and the object is used as the access parameter “Accessed

element” in the structured query.

1.2.3.4 Delete filter

Delete filters are only available for defining triggers. They are used for testing in a deletion

situation whether the higher-level element is also affected by the delete operation. For ex-

ample, you want a trigger to not be executed if an object including all its properties is deleted

but a deletion filter must be used if a certain property of the object is deleted.

When defining a delete filter, at least one operation parameter must be specified which de-

termines which deletion of an object is to be tested.

• All parameters must apply: All specified operation parametersmust apply. For example, if
two operation parameters are specified (accessed element and primary element), then

it is checked whether the delete operation applies to both the accessed element and the

primary element. This can only be the case if the primary element is also the accessed

element.

• One parameter must apply: Only one of the specified operation parameters has to apply.

Note: In most cases, the operation parameter offers a superordinate element or primary

object because a check is to be performed as to whether only the property is deleted or if

the property is deleted because the entire object has been deleted.

• Not affected by the delete operation: The condition of the filter is positive if the element
transferred in the operation parameter is not deleted in this transaction.

• Affected by the delete operation: The condition of the filter is thus positive if the element
transferred in the operation parameter is deleted in this transaction.

Technical Handbook 5.8

78/488

Example: Delete filters in triggers

In this example, a trigger is only to be executed if the city, street or ZIP code of a company is

modified or deleted, but not if the object containing the properties is deleted. The setting Not

covered by deletion is used for this purpose. If the delete operation affects the superordinate

accessed element, which in this case is the company object itself, then the checking of the

subtree is aborted because the filter has returned a negative result.

The superordinate element operation parameter is used along with the Not affected by the delete

operation setting.

In this example access situation, the ZIP code attribute with the value “12345” in the “Company X”

object is deleted. The object itself is not deleted. The “Company” query filter, which is defined

by the “Superordinate accessed element” operation parameter, and the “City, street and ZIP code”

property filter receive a positive response. The subsequent delete filter also returns a positive re-

sponse, as the object containing the property (superordinate accessed element) is not affected by

the delete operation - in line with the “Not covered by deletion” setting of the delete filter.

Technical Handbook 5.8

79/488

In this access situation the “Company X” object is deleted by user Person A. Deleting the object au-

tomatically deletes all properties of the object - and thus all attributes of the object as well. The

check of the trigger tree is executed for the deletion of both the object and the attribute. The

“Company” query filter and the “City, street and ZIP code” property filter are fulfilled for the delete

process of the attribute in the check of the trigger tree. The delete filter itself is not fulfilled in this

situation, as the “Company X” object containing the “ZIP code 12345” property is deleted.

Use of delete filters makes sense, for example, if the trigger script compiles the name of the

object from its properties. As a result, the name of the object is not modified several times

when the properties of the object are deleted; instead, the object and all related properties

are deleted without the script for compiling the name being executed. This usually saves un-

necessary calculation times and can make sense in specific application scenarios, e.g. if the

trigger sends an email notification that an object has been renamed (and this avoids sending

numerous superfluous emails regarding the name change).

1.2.4 Operation parameters

Operation parameters control the element to which the result of the structured query for the

condition check should be compared in query filters. In the simplest case, the result is com-

pared to the element that is to be used to execute the operation to be checked. Operation

parameters can be used to modify the transferred element. You can choose the current user

or elements from the element environment that will be used as the comparison element for

the query filter.

They are also used, among other things, in delete filters and script triggers. Based on the

element to which access is executed, they specify there the element on which the script is to

be executed, or on which the deletion of elements (and which elements) is to be filtered.

When is this useful? It can be essential if you cannot use an element from the environment

of the affected object instead of the object itself for comparison: when, for example, you

want to check access rights for creating new objects or types. It is not possible to define a

structured query that returns the object that has not been created yet. In this case, the query

filter must be compared to something else, i.e. the type of object to be created and, in case

of object types, to the super-type of the type to be created.

Technical Handbook 5.8

80/488

Operation parameter Description

(Super) type In the case of types, the (super) type is the super-type of the

type. In the case of objects, the (super) type is the type of the

object type. In the case of attributes or relations, the (super)

type is the type of the property.

Accessed element The accessed element is the element affected by the operation.

Application Objects of the type "application" (to be found within TECHNI-

CAL > View configuration > Object Types > Application).

Core semantic element If the higher-level element is an extension, then the core se-

mantic element is the object on which the extension is stored.

Otherwise, the core semantc element is identical to the ac-

cessed element.

Folder The Folder operation parameter is the folder affected by the

operation.

Inverse relation If the property affected by the operation is a relation, the pa-

rameter contains the inverse relation half.

Inverse relation type The inverse relation type is the type of the inverse relation. This

can be used for the generation of relations.

Parent element The parent element is the object, the type or the extension af-

fected by the operation. In the case of properties, the parent

element is the object, the type or the extension on which the

property is saved.

Note: If the accessed element is a meta property and the par-

ent element is a relation, the following needs to be obeyed:

• Due to the symmetric storage of meta properties at rela-
tion halves, the returned direction of the relation is not

unique for double-sided relations (= conventional rela-

tions) or symmetric relations. In this case, the required

relation half needs to be determined by means of a script

or a structured query.

• In case of single-sided relations, the parent element is the
real relation half (meaning: not the virtual relation half).

Primary core element If the primary element is an extension, then the primary core

element is the core element of the extension. Otherwise, the

primary core element is identical to the core semantic element.

Primary element If the superordinate accessed element is a property, the pri-

mary element is the object, the type or the extension on which

the property is stored (transitive). Otherwise, the primary ele-

ment is identical to superordinate element.

Primary property In the case of meta properties, the primary property is the

property closest to the object, type or extension. Otherwise,

the primary property is identical to property.

Technical Handbook 5.8

81/488

Primary relation target The primary relation target is the primary semantic element of

the relation target.

Property The property is the property that the operation affects (at-

tribute or relation). If the operation is performed on an object,

type or extension, the operation parameter property is blank.

Relation target If the property affected by the operation is a relation, the Re-

lation target parameter contains the relation target of the rela-

tion half. (The source of the relation would be the higher-level

element in this case.)

User The user is the object of the users which executes the opera-

tion.

1.2.4.1 Operation parameter (Super) type

The “(super) type” parameter is used, for example, if operations that create new elements

are to be checked in the rights system. When elements are created, the query filter cannot

be defined so that it finds elements that have not been created yet. The query filter must

work on the super-type or type of the element to be created. During the creation of objects,

attributes and relations, the type of the objects, attribute or relation is used. For types, the

super-type of the type to be displayed is used.

Accessed element (Super) type

Object or extension The type of object or extension

Type The super-type

Property The type of property

1.2.4.2 Operation parameter Accessed element

The accessed element is the element of the Knowledge Graph that is currently being ac-

cessed. For query filters in the rights system, for example, the accessed element is the ele-

ment that is to be accessed by an operation. When checking an access situation, the element

is then transferred to the query filter on which the operation is supposed to be executed.

The query filter then compares the accessed element to the result of the structured query.

1.2.4.3 Operation parameter Application

The operation parameter "Application" refers to the application context within which the

element is actually being accessed. Examples for applications are the Knowledge Builder or

the Viewconfiguraiton mapper.

Technical Handbook 5.8

82/488

Accessed element Application

Object, type or extension Object of the currently used application

1.2.4.4 Operation parameter Core semantic element

The core element is used when work is done with extensions. Instead of the extension, the

core element delivers the object to which the extension is saved.

Accessed element Core object

Object, type or property The actual accessed element

Extension The object to which the extension is saved

1.2.4.5 Operation parameter Folder

If a folder from the Folder area of the Knowledge Graph is to be transferred to the search as

a parameter, the Folder operation parameter must be used.

Accessed element Folder

Folder The actual accessed element

Object, type, extension

or property

Blank

1.2.4.6 Operation parameter Inverse relation

The inverse relation is the “opposing direction” of a relation half. If the relation half is consid-

ered as directed graphs, then there is a relation between two opposing graphs (the “forward

direction” and the “reverse direction” of the relation) that is attached between two elements.

The inverse relation is therefore the opposing relation half. The inverse relation has the rela-

tion source of the relation half as its relation target and vice-versa.

Accessed element Inverse relation

Relation half The inverse relation half

Object, type, extension

or attribute

Blank

Technical Handbook 5.8

83/488

1.2.4.7 Operation parameter Inverse relation type

The inverse relation type is the type of the inverse relation.

Accessed element Inverse relation type

Relation half Type of inverse relation half

Object, type, extension

or attribute

Blank

1.2.4.8 Operation parameter Parent element

The semantic element is used if the direct properties of an element are to be retrieved.

Accessed element Superordinate element

Object, type or extension The actual accessed element

Property Object, type or extension on which the property is stored

Meta-property Property on which the meta-property is stored

1.2.4.9 Operation parameter primary core element

If you want the corresponding object or type to be addressed for an accessed element, you

must use the primary core element. In contrast to the primary element, no extensions are ad-

dressed/permitted when using the primary core element. In case of extensions as accessed

element, the core object is output.

Accessed element Primary core element

Extension The object to which the extension is saved

Object or type The actual accessed element

Property or meta-

property of an extension

The object to which the extension is saved

Property or meta-

property of an object

or type

Primary semantic element - object or type to which the prop-

erty is saved (transitive)

Technical Handbook 5.8

84/488

1.2.4.10 Operation parameter primary element

The core semantic element always delivers an object, type or extension. If the core semantic

element is executed on meta properties, the properties are processed transitively until the

object, type or extension to which the properties are appended is found.

Accessed element Core semantic element

Object, type or extension The actual accessed element

Property Object, type or extension on which the property is stored

Meta-property Object, type or extension on which the property is stored on

which in turn the meta-property is stored (transitive)

1.2.4.11 Operation parameter Primary property

The primary property is always a property. It resembles the primary semantic element in that

it transitively processes meta properties. However, it delivers the last property that precedes

the primary semantic element, that is, the property stored directly on the primary semantic

element.

Accessed element Primary property

Property The actual accessed element

Meta-property (or meta-

property of a meta-

property)

The property that is closest to the object, type or extension

Object, type or extension Blank

1.2.4.12 Operation parameter Primary relation target

In contrast to the primary semantic element of a relation half, the primary relation target is

not the object, type or extension on which the relation half is located but the object, type or

extension to which the inverse half of the relation is connected.

Accessed element Primary relation target

Relation half The primary semantic element of the relation target (object,

type or extension on which the inverse relation half is stored)

Relation half whose rela-

tion target is a property

or meta-property

The primary semantic element of the relation target (object,

type or extension of the meta-property or property on which

the inverse relation half is stored)

Technical Handbook 5.8

85/488

Object, type, extension

or attribute

Blank

1.2.4.13 Operation parameter Property

Attributes and relations are understood to be properties. The operation parameter contains

the attribute or the relation on which the operation is performed. If the operation is per-

formed on an object or type, the operation parameter property is blank.

Accessed element Property

Attribute or relation The actual accessed element

Object, type or extension Blank

1.2.4.14 Operation parameter Relation target

The relation target is not the source, but rather the “target” of a relation half. It can also be

considered the inverse relation half.

Accessed element Relation target

Relation half The relation target is the relation source of the inverse relation

Object, type, extension

or attribute

Blank

1.2.4.15 Operation parameter User

The “User” parameter is always the user object of the user who is currently logged in, re-

gardless of the accessed element. For this purpose, the Knowledge Builder account must be

linked to a Knowledge Graph object. The chapter on activation of the rights system describes

how this link is created.

Accessed element User

Object, type, extension

or property

Object of the user who is currently logged in

Technical Handbook 5.8

86/488

1.2.4.16 Examples: The use of operation parameters

Example 1: Accessed element and property in the rights system

The example below shows the access situation on the left side and the corresponding query

filter on the right side.

Access situation: Person A wants to change the attribute ZIP Code of company X.

Query filter: All attributes created by a certain user are filtered. In the structured query, the

access parameter “User” is used, which restricts the objects of user to the person who wants

to execute the operation. This corresponds to all attributes that were created by Person A.

Checking the access rights: To check the access rights, the attribute (accessed element/property)

on which the operation is to be executed is transferred to the query filter. If this attribute is

included in the set of search results, the query filter check returns a positive result.

Operation parameter: The attribute Duration is transferred to the query filter. In this case,

both the operation parameter “Accessed element” and the property can be used because

the attribute “ZIP Code” is actually a property and represents the accessed element of the

operation.

Example 2: Superordinate element and primary semantic element in the rights system

This example shows the access situation on the left side and the corresponding query filter

on the right side.

Technical Handbook 5.8

87/488

Access situation: Person A changes the Zip Code attribute, which currently has the value

12345 and is part of the Company X object.

Query filter: The query filter is defined in such a way that it searches for all objects that were

created by a specific user; the currently logged-in user is the accessed element. Accordingly,

the query filter finds all the objects created by Person A.

Checking the access rights: If the result set of the query filter contains Company X, the

following folder (filter or decider) is executed.

Operation parameter: Use of the “Superordinate element” operation parameter has the

effect that, instead of the “Zip Code” attribute to be changed being transferred to the query

filter, the object in which it was defined is transferred to the query filter. This is the case for

Company X.

In addition to the superordinate element, it would also be possible to use the “Primary se-

mantic element” operation parameter in this case. The “Superordinate element” operation

parameter would have the result that all properties and the object itself are rated positive by

the filter. In addition, the “Primary semantic element” operation parameter would also per-

mit meta properties of the object, no matter how many properties are between the object

and the meta property.

Example 3: (Super) type in the rights system

The example shows the access situation on the left-hand side and the query filter applied in

this situation on the right-hand side.

Technical Handbook 5.8

88/488

Access situation: Person A wants to create the attribute Zip Code on the object Company X.

The value is to be 12345.

Query filter: The query filter returns the attribute type “ZIP Code”.

Checking the access rights: If the attribute to be created has the “ZIP Code” type, the check

of the query filter returns a positive result.

Operation parameters: When creating elements, it is not possible to define a query filter

that returns the element to be created and is thereby able to check the access rights. This

means that a different operation parameter must be chosen as the accessed element when

creating elements. The “(super) type” operation parameter is suitable in these situations. In

this example, the attribute type is used, which is the ZIP Code attribute type.

Example 2: Superordinate element and primary semantic element in the rights system

This example shows the access situation on the left side and the corresponding query filter

on the right side.

Access situation: User Paul changes the Length attribute, which currently has the value

02:30 and is part of the Song X object.

Query filter: The query filter is defined in such a way that it searches for all objects that were

created by a specific user; the currently logged-in user is the accessed element. Accordingly,

the query filter finds all the objects created by Paul.

Checking the access rights: If the result set of the query filter contains Song X, the following

folder (filter or decider) is executed.

Operation parameter: Use of the “Superordinate element” operation parameter has the

effect that, instead of the “Length” attribute to be changed being transferred to the query

filter, the object in which it was defined is transferred to the query filter. This is the case

for Song X. In addition to the superordinate element it would also be possible to use the

“Primary semantic element” operation parameter in this case. The “Superordinate element”

operation parameter would have the result that all properties and the object itself are rated

positive by the filter. In addition, the “Primary semantic element” operation parameter would

also permit meta properties of the object, no matter how many properties are between the

object and the meta property.

Example 3: (Super) type in the rights system

The example shows the access situation on the left-hand side and the query filter applied in

Technical Handbook 5.8

89/488

this situation on the right-hand side.

Access situation: User Paul wants to create the attribute Length on the object Song X. The

value is to be 02:30.

Query filter: The query filter returns the attribute type “Length.”

Checking the access rights: If the attribute to be created has the “Length” type, the check

of the query filter returns a positive result.

Operation parameters: When creating elements, it is not possible to define a query filter

that returns the element to be created and is thereby able to check the access rights. This

means that a different operation parameter must be chosen as the accessed element when

creating elements. The “(super) type” operation parameter is suitable in these situations. In

this example, the attribute type is used, which is the Length attribute type.

1.2.5 Operations

Operation filters can be used to specify operations that are then permitted in the filter pro-

cess of operation filters. If a different operation is executed in the access situation than

specified in the operation filter, the system switches to the next subtree when traversing the

rights or trigger tree.

The general operations Create, Read, Modify and Delete consist of multiple individual oper-

ations. If one operation group is prohibited, that means that all the operations it contains

are also not permitted; vice versa, if an operation group is permitted, all the operations it

contains are automatically permitted as well.

The table shows an overview of all available operations that can be applied in operation

filters. Depending on the operation, only specific operation parameters can be used in query

filters. These are specified in the “Operation parameters” column.

Note: Derived operation parameters such as primary semantic elements or primary semantic

core objects, for example, can be used whenever the parameter from which they are derived

can be used.

Special features of triggers

No read operations can be used for triggers. In addition, the operation groups Display of

objects (operation: Display in graph editor) and Edit (operation: Validate attribute value are

not available for triggers.

In addition, the “Accessed element” operation parameter is available for triggers in the “Cre-

ate” operations if the time/type of execution is set to After the change or End of transaction.

Technical Handbook 5.8

90/488

Operation group Operation Operation parameter

Display of objects Display in

graph editor

Accessed element

Edit Validate at-

tribute value

Accessed element, property, superordinate ele-

ment, (parameter to be checked: attribute value)

User-defined opera-

tion

Create Create at-

tribute

(Super) type, superordinate element

Create exten-

sion

(Super) type, superordinate element, core object

Create object (Super) type

Create folder Folder

Create relation (Super) type, superordinate element, relation tar-

get, inverse relation type

Create relation

half

(Super) type, superordinate element, relation tar-

get

Create type (Super) type

Add transla-

tion

Accessed element, property, superordinate ele-

ment

Read Read all ob-

jects/properties

of a type

(Super) type

Read attribute Accessed element, property, superordinate ele-

ment

Read object Accessed element, superordinate element

Read relation Accessed element, superordinate element, prop-

erty, inverse relation, relation target, inverse rela-

tion target

Read type Accessed element, superordinate element

Delete Delete at-

tribute

Accessed element, superordinate element

Delete exten-

sion

Accessed element, property, superordinate ele-

ment

Delete object Accessed element, superordinate element

Delete folder Folder

Technical Handbook 5.8

91/488

Delete relation

half

Accessed element, inverse relation, property, su-

perordinate element, relation target, inverse rela-

tion target

Delete type Accessed element, superordinate element

Remove trans-

lation

Accessed element, property, superordinate ele-

ment

Modify Modify at-

tribute value

Accessed element, property, superordinate ele-

ment

Modify folder Folder

Modify

schema

Accessed element, superordinate element

Change type Accessed element, superordinate element

Use tools Export

Import

Edit/execute

script

Read object

The operation Read object is used to display objects for the corresponding object type on

the Objects tab. The operation does not prevent the display of the object when it is called

up using a linked object. In this case, the operations for properties Read attribute and Read

relation then apply.

Read all objects/properties of a type

This operation specifically controls the access rights check when processing a structured

query. A structured query checks all intermediate results by default. A search for all employ-

ees with a wage greater than e10,000 would therefore not result in any hits when the wage
cannot be read, even if the corresponding employee objects could be read. This response

is often preferred, however is seldom performant. In the case of an extensively configured

rights system in particular, processing of which requires a lot of processor capacity, we rec-

ommend using a control that does not require intermediate results of a structured query

to be checked because a check of the final results is sufficient. In most Knowledge Graphs,

permission can be issued for all property types (“top-level type for properties”).

Technical Handbook 5.8

92/488

To examine which intermediate results are checked, this information can be made to appear

in a structured query. This is done using “Settings->Personal->Structured query->Show ac-
cess rights checks”.

Validate attribute value

The operation Validate attribute value is used when the attribute value to be set must sat-

isfy certain conditions. The definition of the condition for the attribute value is made in a

structured query.

Case example of a configuration: The entered age of a webuser must be greater than zero.

Configuration by means of the structured query in the rights system: the attribute "Age

[years]" contains the condition "value > 0".

Configuration in the rights system: If the query condition is satisfied, then the value can be

stored - this is done by configuring a positive stopmarker "Access granted" , for all other

cases the storage is denied by using the stopmarker "Access denied" - which in this case

is renamed to "Value must be positive" for displaying the validation message.

Note: The name of the stopmarker (here: "Value must be positive") is going to be dis-

played by the validation mechanism in the web frontend.

Technical Handbook 5.8

93/488

Display in the web frontend: when entering a wrong value, the validator returns a yellow

warning message with the name of the stopmarker directly underneath the related property

edit input field:

Two possible definitions are available there for validation of the attribute value:

• Condition for the attribute value to be set:
The new value of the attribute can be validated by a comparison with a specified value

in the structured query.

Example: The attribute value may only be less or equal to 4.0.

• Compare with the attribute value to be set:
This compares the current value with the new value.

Example: The new value of the attribute age may only be greater in this case. Smaller values

are not permitted.

• Compare the value to be set with the result of a script:
This initially determines a comparative value by means of a script.

The script is called using a parameter object that contains the following properties:

Different comparative operators are available for the validation, which can be used to check

the attribute value to be set with another value.

If the new value does not match the defined condition, the filter check produces a negative

result when the initial setting Search condition must be satisfied has been selected.

Modify schema

The modify schema operation concerns changes to the definition area of relations and

changes to the type hierarchy (is a subtype of and is a super-type of relations).

1.2.5.1 Example: The use of operation groups in the right system

This example shows how groups of operations (read, generate, modify, delete) can be used

sensibly when defining rights. All operations are to be prohibited for the Company type and

its objects. This includes the following actions:

• Deletion of the object type Company
• Deletion of specific company (objects of Company)
• Deletion of attributes that occur on a company

Technical Handbook 5.8

94/488

• Deletion of relations that occur on a company (relation target and source)
• Deletion of extensions that extend objects of Company
• Deletion of attribute and relation types that have objects or subtypes of Company as
their definition area

For example, if all delete operations for an object and the corresponding type are to be pro-

hibited, you have to ensure you cover all delete operations by means of the corresponding

parameters when selecting the operation parameters in the query filter of the right:

The only condition of the query filter used is the object type Company, for which the setting In-

stances and Subtypes is selected. The operation parameter “Accessed element” covers the object

type “Company” and all objects that belong to this type. The parameter Core object covers the

extension objects that belong to copanies. Attributes and relations are covered by the operation

parameter “Parent element.”

In the rights tree, the operational filter for the delete operation comes first. This is followed

by the query filter depicted below and finally the decider “Access refused.”

Query filters used in the example: “Core object,” “Superordinate element” and “Accessed element”

have been selected as operation parameters. The settings used are “One parameter must apply”

Technical Handbook 5.8

95/488

and “Search condition must be met.”

Extension of the right with attribute and relation types

A thus defined right covers all but one of the above described requirements on the right. Only

the deletion of attribute and relation types that have been defined for objects and subtypes

of songs are not taken into account in this definition of rights.

The definition of rights is extended with the following filter:

The query filter includes all property types (attribute and relation types) that have been defined for

objects or subtypes of company. In the query filter definition, the parameter “Accessed element”

and the setting “Search condition must be met” are used.

1.2.6 Testbench

When the Rights folder is selected in the System area, the Saved test cases and Configure tabs

are available in the main window. The test system area is found in the Saved test cases tab.

The test system for triggers is called in the Triggers folder by means of the System area.

Saved test cases can be tested again here. The test interface in which the test cases can be

defined can be called using the Open testbench button.

Technical Handbook 5.8

96/488

In addition to the functionalities that are described in the following chapters, Testing an ac-

cess situation and Defining test cases, there is the option of testing access rights directly on

an object or type. Select the access rights function using the context menu (right click). The

following menu items can be selected there:

• Object: All operations (modify, delete, read and display in graph editor) are tested on
the object and their result is output.

• All: All operations (modify, delete, read and display in graph editor) are tested on the
object and all their properties (attributes and relations) are tested.

• Rights system test environment: The test environment for checking rights opens.

1.2.6.1 Test the access right situation

Two areas are relevant for testing the rights system and the trigger functionality:

• The actual test environment: The test environment offers the option to test the access
rights or when a trigger is executed for a certain test case.

• The Saved test cases tab: This lists the test cases and makes them available for subse-
quent checking.

Instructions for opening the test environment

1. Select the folder Rights or Triggers in the Technical area in the Knowledge Builder.

2. If you are working in the rights system, select the Saved test cases tab in themain window.

3. Click Open test environment (bottom right) so that the test environment opens in a new

window.

Technical Handbook 5.8

97/488

The test environment is comprised of several areas: The user and the element to which the

property that is to be checked is attached is defined in the upper area. The elements can be

an object, a type or a property (when this is transferred as an element).

The properties area lists all properties of the selected element. Non-italic properties are spe-

cific properties that are already on the object or the property. Italic properties, in contrast,

are properties that can be created based on the schema, but have not yet been created. If

creation of a new property is to be tested, the property in italics must be selected.

The operation that is to be tested can be selected in the Operation window. Depending on

the parameters selected, checking rights either is possible or not.

Please note: If a property of a property, this being a meta-property, is to be tested, then

the property must be marked in the property window and the As element button must be

selected. In the case of relations, for example, the specific relation between two objects or

properties is selected as an object. All properties of the specific relation are now available in

the properties window. (This can also be done with attributes.) The Sem. element button can

be used to reverse this step.

The result of the test is displayed in the bottom window. The Check button must be selected

for this. The results window displays all tested cases.

• Element: the object, the type or the property on which the property is defined.
• Property: the specific property that is to be tested (is blank when italic properties are
tested)

• Operation: that operation that is to be tested
• Access allowed: the result of the test in the test case
• Decision path: the corresponding folder which leads to the test result
• Time: the time required for the rights check

Technical Handbook 5.8

98/488

Please note: When testing relations, the relation, the inverse relation and the both relations

halves are generally tested separately.

1.2.6.2 Define test cases

In order to monitor the functionality of the rights system, it is possible to save test cases.

This is particularly important if changes are made to the rights system and you want to check

afterwards whether the new result still matches the expected result. All saved test cases are

displayed on the Saved test cases tab. There it is possible to check all test cases at the same

time.

Instructions for defining a test case

1. In the test environment, select the element and the property you wish to check.

2. Select the operation to be tested.

3. Press the Check button. Now the access rights are tested for the delivered parameters.

4. In the results output, choose the test case you want to save. (You can only ever save

one operation as a test case.)

5. Press the Test case button. The selected test case is saved and is available for future

checks.

Test multiple test cases simultaneously

Screenshot with saved test cases, the second test case is displayed in red.

All test cases whose test result matches the expected test result are displayed in green. If a

test case is displayed in red, the result of the check differs from the expected test result. The

expected test result is determined by the fact that the check of the test case was performed

for the first time during the definition of the test case. The result of this first check is displayed

Technical Handbook 5.8

99/488

as the expected result during later checks of the test case. In the test system, the expected

result is either Access permitted or Access refused; for triggers, the expected result is either

Execute script or “nothing happens” in the form of a hyphen.

Saved test cases can be deleted with Remove. If you want to edit a test case, you can use the

Open test environment button to do so. In that case, all the parameters of the test case are

transferred to the test environment.

1.3 View Configuration

The view configurationmakes it possible to configure various views of the data in i-views. The

configured views are deployed in applications. It is possible, for example, to display sections

of the Knowledge Graph or create specific compilations of data (e.g. in forms, tables, results

lists etc.).

This allows us to answer the following questions, for example, and create the required views

with view configurations:

• How should the properties of specific objects be displayed?
• In what order should the properties be displayed?
• Whenwe create a new object, which attributes and relations should be displayed in such
a way that they cannot be overlooked and thus not filled out?

• What should the list of objects for a type look like?
• Should it even be a simple list, or should the objects be displayed in tables?
• Which elements should be displayed in the individual columns?
• Should relation targets be displayed directly? Or only specific attributes?
• Should we define different tabs that summarize properties and attributes that go to-
gether? ...

Example: Specific persons have the properties Name, Age, Gender, Address, Phone number,

Email, Cell number, Fax, knows, is friends with and is a colleague of. Now we can use the view

configuration to create more structure for the data view by defining a tab with the heading

“General information”, which contains the name, age and gender; a tab with the heading

“Contact data”, which contains the address, phone number, email, cell number and fax; and

a tab with the heading “Contacts”, which contains the knows, is friends with and is a colleague

of properties.

Technical Handbook 5.8

100/488

Example of a view configuration. Upper part of screenshot: Unconfigured section of an object

in the graph view with all its properties. Lower part of screenshot: Configured view of the same

object, where the properties that go together have been grouped, unimportant relations have been

left out, and similarity relationships are displayed directly.

One special case of view configuration is the configuration of the data view in the Knowl-

edge Builder, because the Knowledge Builder is also an application which allows various data

views. This is helpful if we want to use the Knowledge Builder as a preview in order to try out

specific configurations. The view configuration in the Knowledge Builder can be configured

so that important properties that need to be added can be requested in a clearly visible way,

for example the detail pages for objects. This is particularly helpful if data are to be collected

systematically.

1.3.1 Concept

The concept of i-views is that semantic elements can be used for configuration. The views in

the Knowledge Builder are generated with the help of a preset view configuration.

1.3.1.1 View Configuration

The purpose of the view configuration is to format the data of the Knowledge Graph for

applications in such a way that it can be displayed either in Knowledge Builder or as an

application in the web front-end via a bridge.

In the Knowledge Graph, special “view configurations” can thus be created for use in Knowl-

edge Builder and for applications such as the ViewConfiguration Mapper.

The view configuration in Knowledge Builder contains the following categories:

• Applications

Technical Handbook 5.8

101/488

• Graph configuration
• Configuration of the KB folder structure
• Panel
• Relation target search
• Start view (KB)
• Search field (KB)

For more information, see the “Context/using view configurations” chapter.

1.3.1.2 View Configuration Mapper

The view configuration mapper is used to map the preconfigured views of the view configu-

ration to the web front-end of the browser.

The structure of the view configuration mapper is generally structured in hierarchical fashion

and contains the panels for building the layout (= content arrangement) of the web front-end.

To display the contents, a panel needs a sub-configuration, which is referred to as a “view”

(= prepared content).

In concrete terms, the view configuration mapper contains one main window panel and any

number of dialog panels. The main window panel reflects the entire display area of the

website in the web front-end and contains the following panels, for example:

• Window title panel
• Panel with defined view
• Panel with flexible view
• Panel with linear layout
• Panel with changing layout

Please note that the view configuration mapper is a single-page application; this means it

is not the visibility of panels over several pages that is controlled, but the visibility of the

Technical Handbook 5.8

102/488

elements featured in the permanent panels.

1.3.1.3 Create and update the view configuration

Create

In Knowledge Builder, there are two places where you can create a new view configuration:

1. Semantic element-oriented configuration

The first place makes sense if a view configuration is to be generated for a certain object

type: On the “Details” tab, you can edit the view configuration for details views and lists.

The displayed hierarchy has the sub-item “View configuration” with four additional subitems.

• Object -> Details: This is where you can configure the details view for objects.
• Object -> Object list: This is where you can configure the object list that shows the ob-
jects of the selected type in Knowledge Builder.

• Type -> Details: This is where you can configure the details view for types.
• Type -> Object list: This is where you can configure the object list of subtypes of the
selected type that can be seen in Knowledge Builder.

You can create view configurations for this type or objects of this type on the objects type on the

“Details” tab.

Click on “New" to create a new view configuration. For object lists you automatically

Technical Handbook 5.8

103/488

create a new view configuration of the table type. For details, a dialog opens in which you

can select the desired view configuration element (on this subject, see the “View configuration

elements” chapter).

By clicking on the Edit button or double-clicking on the selected view configuration, open the

editor with which you can configure the view.

Note: On the “Context” tab of the respective configuration, the entry “use in” specifies in

which application the configuration is to be displayed:

Application context “apply in" Result

Knowledge Builder The details view or the list for a type or ob-

ject in Knowledge Builder is displayed.

View configuration mapper The details view is used for the web front-

end.

If there is no entry for the application context and the view does not receive an application

content through inheritance from a higher-level element (view or panel), the view is not as-

signed and therefore deactivated.

Special case: Hierarchy + object list

A possible use case for the details view of the Knowledge Builder is to display a domain-

specific hierarchy with object details. In this case, “Knowledge Builder” must be entered for

the application context in the “Knowledge Builder” hierarchy view, and to configure the de-

tails, the configuration name must be entered in the hierarchy view. Assigning a different

application context in this constellation can lead to an endless cycle in the view configura-

tion.

2. View-oriented configuration

The second position presents itself if an application is to be generated from scratch the many

view configurations are to be created at once. To this end, Technical > View configuration >
Object types contains all view configuration elements that are in use in the Knowledge Graph

or for which a new view configuration can be created.

To configure a web front-end, use the panel configuration Technical > View configuration >
View configuration mapper. For more information, see chapter 3 “View configurationmapper.”

Update

To ensure that changes to the view configuration are copied to the application, you have to

update the view configuration in Knowledge Builder by clicking on the “View configuration

update” button. This button is always located in the respective View configuration menu

bar.

1.3.1.4 Context / Use of view configurations

The context in which a view configuration element is used is shown in the properties editor

under the “Context”menu tab.

Technical Handbook 5.8

104/488

Context

The context area is used to define the semantic elements for which the view configuration

applies, and to define where, i.e. in which applications or in which other view configurations,

it is displayed:

• “Apply to”: The semantic element for which the view is being used must be specified
here. If the view configuration is defined by the object type, the object type is entered

automatically. Additional object types can be specified as necessary

Example: If the view is a node category of the Net-Navigator, then the object type for

which the objects are shown can be specified under “Apply to.”

• “Apply to subtypes”: This is selected to show the type itself, and its subtypes, using the
application.

• “Apply in”: Specifies the application context, i.e. which application (mostly: ViewConfig-
uration Mapper or Knowledge Builder) or configuration the view is applied in.

If no application has been entered for using the view configuration, then the view configura-

tion will not be shown, apart from the following exceptions. View configurations are defined

as a tree structure in which the principle of inheritance applies. This is why the application

does not have to be specified separately for sub-configurations. They are shown as part of

the top-level configuration. A property configuration is shown, for example, when this is part

of a layout for which its use was specified. A view configuration is also shown when it is part

of a panel which, in turn, is defined in an application.

The following applications are available from the start:

• Graph editor: The configurations have an impact on the display in the graph editor.
The graph editor is used for visualizing the semantic elements and their relationships.

• Knowledge Builder: The view configurations are used in the actual Knowledge Builder.
Along with the detailed configurations, the object list configurations are also available

here.

• Knowledge portal: The knowledge portal is a component of i-views which can be used

Technical Handbook 5.8

105/488

as a front-end. It shows the objects of the Knowledge Graph on details pages and in

context boxes on the basis of their semantic contexts.

• Net-Navigator: This is used for visualizing semantic elements. In contrast to the graph
editor, which is part of the Knowledge Builder, it can be used in the Knowledge Builder

and ViewConfiguration Mapper applications.

• Topic chooser: It allows relation targets to be selected in a window.

• ViewConfiguration Mapper: The ViewConfiguration Mapper is an intelligent front-end
which, in contrast to the knowledge portal, uses the view configurations. It can be used

to create straightforward and fast views of the data.

Moreover, it also allows any individual applications to be defined, which can be linked to the

view configuration at this point.

References

“References” refers to the reuse and continued use of a view configuration within another

view configuration:

• “Is included in panel”: Indicates which higher-level panels there are in the view config-
uration hierarchy

• “Has sub-panel”: Indicates which panels there are in subordinate hierarchy levels
• “Order”: Determines the order of the panel when the higher-level panel has a linear
layout (horizontal or vertical)

• “Sub-configuration”: Refers to a subordinate configuration that contains the view (=
specific display of the content)

• “Activate actions from panel”: Indicates that an action in this panel is influenced by
the action in another panel (for example: Display of the search result in one panel is

influenced by the search input in another panel)

• “Show result from action”: Determines that the action by another panel causes a re-
sult to be displayed in a defined form in this panel (for example: Net-Navigator shows

the elements for the object that was clicked in another panel s search result field)

• Other relations (“Table of”, “Context of”, “Configuration for meta properties of”, “Action
of”, etc.) show the contexts in which a view configuration is used. A view configuration

can be used in any number of view configurations.

1.3.1.5 The validity of view configurations

The chapter Using the view configurations already noted that the application in which and

the objects and types for which the view is displayed are decisive for view configurations.

Nonetheless it is possible that the view configuration is not displayed in the selected applica-

tion. This question is: When is a view configuration valid? And for which object or type is the

view configuration valid?

Inheritance of view configurations

In relation to inheritance, view configurations respond like properties. Subtypes or objects of

subtypes inherit view configurations.

Application of the most specific view configuration

Technical Handbook 5.8

106/488

The subtypes use the super-types according to the inheritance principle as long as they don t

have their own view configurations. The most specific view configuration is always used: This

is the configuration that is defined directly on the type. If that is not the case, it is checked

whether there is a view configuration on the super-type. If that is not the case, the next level

up in the type hierarchy is checked to determine if a view configuration has been defined.

The view configuration that is closest to the object type is then used. If no view configuration

is found on the super-types, the default configuration is used for the administrators.

What happens when there are two equivalent view configurations?

If there are two equivalent view configurations, no view configuration is displayed. If the

application or object type was not defined for one of the view configurations, this is not

considered to be an active view configuration. In this case the other view configuration is

used. If you want to display different views for different users, you can define a rule in the

detector system. In this case, the view configuration is used in accordance with the defined

rule as long as the rule only has one view configuration dependent on the user.

1.3.2 Menus

Menu configurations contain buttons, so-called actions, which allow the user to execute a

range of functions.

The menus mainly serve two functionalities in the handling of actions. On the one hand, they

can be used to structure actions, and on the other, they can be used to specify where the

menus are deployed. The Knowledge Builder and ViewConfigMapper contain many locations

where the contents of menus are displayed, for example buttons at the head of an editor, or

the context menu for an individual property. Currently it is not yet possible to apply menus

to all places where menus are theoretically possible.

The next section describes the direct setting options for a menu, as well as the existing menu

types and how to use them.

Name Value

Label The menu type and the interface handling the display de-

termine whether the label is displayed.

Replaces standard menu This parameter currently only affects the Knowledge

Builder. Some editors, e.g. for a table, display standard

menus. These can be switched off with the help of this pa-

rameter.

Menu type The menu type describes the use of the menu in the indi-

vidual components. The menu types are described further

down.

Menu types:

Menu bar

Name Value

Technical Handbook 5.8

107/488

Add standard actions This icon is only displayed as an entry of the context menu if

standard actions can be added, currently for menus of tables

and search configurations.

The standard actions are applicable for the Knowledge

Builder view configuration only and comprise the actions

provided as in object list menus:

New

Show (Edit)

Display graphically

Search

Delete

Recently accessed objects

Refresh view

Show in tree

Print

This function offers the option to reactivate some or all de-

fault menu entries and to change the order of the individual

actions if the parameter Replaces standard menu is set.

Note

• If the parameter Replaces standard menu is not set, the actions that are not included in
the menus are appended sequentially.

• If the order of the standard actions is supposed to be changed, the parameter Replaces
standard menumust be set. Following that, standard actions can be added using the Add

standard actions action. The standard actions can now be sorted in any way you wish

and mixed with your own actions.

Context menu

Icon

Technical Handbook 5.8

108/488

Knowledge

Builder

Currently it is possible to expand or define context menus for a table

row and an object editor.

Object configuration:

You can use the Menu tab to create menus in any top configuration of

an element. You can also switch off the standard menu here by setting

the Replaces standard menu parameter.

Table configuration:

The context menu contains two sections for a table row. The first relates

to the selected element, the second relates to the table. There are two

different configuration locations for the two sections. For the first case,

the menu for an element must be linked to any configuration, ideally

a new one, which in turn is attached via Apply in to the table that is to

display the contextmenu. In the second case, themenu can be attached

directly to the table.

ViewCon-

figMapper

This is currently not used in the ViewConfigMapper.

JSON

"label" : “Menu (context)”,
"actions" : [{...}],
"type" : "contextMenu"

List

Icon

Technical Handbook 5.8

109/488

Knowledge

Builder

This is only used in the start screen configuration. The configured ac-

tions are displayed in a list.

If labels are assigned for the menus, these are also displayed and there-

fore offer a structuring option.

ViewCon-

figMapper

This is currently not used in the ViewConfigMapper.

JSON

"label" : “Menu (List)",
"actions" : [{...}],
"type" : "listMenu"

Toolbar

Icon

Knowledge

Builder

The actions contained in themenus are added in sequence. Subdivision

by menus and labelling of menus are currently not considered.

ViewCon-

figMapper

The actions contained in themenus are added in sequence. Subdivision

by menus and labelling of menus are currently not considered.

JSON

"label" : “Menu (toolbar)”,
"actions" : [{...}],
"type" : "toolbar"

Technical Handbook 5.8

110/488

1.3.3 Actions

The actions in i-views are divided into preconfigured action types. These action types are

categorized as follows:

• Universal actions (can be used in knowledge and ViewConfiguration Mapper)
• Actions specific to Knowledge Builder
• Actions specific to ViewConfiguration Mapper
• Internal actions (for administrative use only)

Depending on the action type and application, additional configurations are required, for

example creating additional panels for displaying the results of an action.

1.3.3.1 General

Functionalities can be specified in the view configuration using actions.

All the configured actions are displayed in the Knowledge Builder as additional buttons. The

script contained in the action is executed when the respective button is clicked.

The actions configured are generally displayed as buttons in the Knowledge Builder or in the

web frontend (by means of the ViewConfiguration Mapper). Actions can be summarized in a

menu, or be defined directly for a view configuration.

Standad actions on an instances list

The label is displayed as a tooltip in the Knowledge Builder. The selected symbol (any image

file) is scaled to the size of the button.

Please note: If no symbol is specified, no button is displayed in the Knowledge Builder. For

the web frontend, a label or an icon is needed at least.

Note: Actions of any type can be attached at a wide range of positions. In most cases, they

are also displayed. There is no guarantee that this action can be executed in the content in

which it is currently being used. The applicaton area for the actions (Knowledge Builder or

web frontend) is described in detail in the following chapters.

Setting options

Name Value

Configuration

Configuration name The configuration name serves for identification and reuse

of the configuration element.

Label A label can be defined for the button for the action here.

Technical Handbook 5.8

111/488

Script for label A script can be used to specify the button label. This option

is only available when no label is specified.

Bookmark path Bookmark path can be selected or created here. The dis-

played name is used as path pattern in the same time. The

path pattern is used for path pattern construction of the

bookmarking resource. For detailed information, see chap-

ter about bookmarking ("Bookmarks and Resource").

Action type The type of action. The different types are explained further

down. A script overwrites the action defined by the action

type. Dependent on the action type, only certain types of

script might be available.

Note: When switching the action type, scripts which are

not applicable anymore will be removed; is the script is un-

registered, it will be deleted. A dialog informs about the

consequences beforehand.

Script (custom) The script that is to be executed for this action. The script

is allowed to modify elements of the knowledge graph and

defines the action result.

This script is available if one of the following action types

has been selected:

• Choose relation target
• Script
• Selection

Script (deprecated) The script that is to be executed for this action. Deprecated

-> use "Script (Custom)"

Script (before action) This script is available only if the action type "Save" has

been selected.

Script (ActionResponse) (VCM) A script specified here executes a so-called ActionResponse

after the action. This script must not be used for standard

VCM-views. Not available for all action types.

Script (after action) This script is available only if the action type "Save" has

been selected.

Script (recall)

perform by A view role can be selected or defined here.

Technical Handbook 5.8

112/488

Question before execution For web frontend only. A text can be specified here which

is to be shown to the user in a dialog box before the action

is executed. The dialog provides the option of canceling or

continuing the action (Ok/Cancel/Close).

Script for question before

execution

A script can be used here to determine the text for the con-

firmation dialog for the action.

Caution:

• If a blank string is returned, the dialog does not ap-
pear.

• If an error occurs within the script, the dialog won’t
appear as well.

Transaction This option is only needed for editing purposes in the web

frontend:

By means of the transaction begin, a temporary

state/element can be memorized until another action

ends the transaction using the transaction commit.

Example: Creating temporary elements in a dialog which

then can be written permanently into the Knowledg Graph

by means of the acton type "Save" and the transaction type

"commit" or rejecting the creation by means of the action

type "Abort", without a transaction type.

Display

Script (enabled) A script can be used here to determine whether the button

for the action is to be activated, and should therefore be

able to be executed.

Script (visible) A script can be used here to determine whether the but-

ton for the action is to be displayed (return value "true" for

visibility, "false" for invisibility).

Icon Icon in forms of a bitmapped graphic which can be selected

here that is to be displayed on the button for the action. For

the web frontend, vector graphics can be used as well. An

action needs at least an icon or a label to be visible in the

web frontend.

Tooltip The content of the tooltip (= mouse-over text) for the action

can be defined here, instead of using the text of the label.

Script for tooltip A script can be used here to determine the content of the

tooltip (= mouse-over text) for the action, instead of using

the text of the label.

Technical Handbook 5.8

113/488

After execution (action)

Notification Text shown in a notification that appears after the action.

Script for notification A script can be used here to determine the content of the

notification.

Notification type (VCM) As a metaproperty of the notification or the script for no-

tification, the notification type can be set to for different

message colors in the web frontend:

• "Success" (green message)
• "Information" (blue message)
• "Warning" (yellow message)
• "Error" (colorless message)

After execution (panels)

Show result in panel

(VCM)

A panel in which the result of the action is to be displayed.

Activation mode (VCM) See chapter "View Configuration Mapper" (3.2.1.2)

Script for activation (VCM) In general, an action can be (re-)used to show content in

diverse panels. The script for activation defines, if the re-

spective panel will be activated for showing the content af-

ter execution of the action or not - by returning a Boolean

value. If no script is used, the panel will be activated in ev-

ery case.

Example: The save action of an edit dialog is configured

to initiate the creation of a new object. Depending on the

type of the recently created object, the new object will be

displayed either in sub panel A or in sub panel B of a flexi-

ble layout panel.

Script for target model

(VCM)

A script can be used which context / semantic element is to

be passed on to the following view after execution of the

action.

Close panel (VCM) Applicable to dialog panels only. After execution of the ac-

tion, the panel is automatically closed.

KB

Action type The action type that is only applicable when using the ac-

tion within the Knowledg Builder and not for the web fron-

tend.

Use original position .

Styles

Styles can be used in different ways to influence the appearance of the button or the

behavior of the button. See respective chapter.

Context

Technical Handbook 5.8

114/488

Action of Describes in which menu the action is currently used. An

action can be (re-)used in different menus.

Sort order Describes the position of the action within the superordi-

nate menu.

Notice Tells e. g. whether the action is used in more than one

configuration. In this case, a blue sign with an exclamation

mark appears nearby the context tab:

1.3.3.2 Universally applicable actions

Universally applicable actions can be used in both the Knowledge Builder and in the web

frontend using the ViewConfiguration Mapper. This includes the action types “Display graph-

ically”, “Delete”, “Search” and “Tag”. For further information about the tag action type, see the

respective chapter about tagging.

1.3.3.2.1 Action type "Display graphically"

The “Display graphically” action is used in a view configuration to graphically depict object

types, relations and objects in the Net-Navigator. Here the configuration is as follows:

For this purpose, a panel must be specified under “Show result in panel” that contains a graph

object as its sub-configuration. The graph object in turn must contain a graph configuration

for the definition of the elements to be displayed:

Technical Handbook 5.8

115/488

1.3.3.2.2 Action type "Delete"

This action type deletes the respective element.

For view configuration in the web frontend, the delete action deletes the respective accessed

element. For example, a delete action in a menu in the second column element of a table

results into a button shown at each row, leading to the row element being deleted when

clicked onto.

Technical Handbook 5.8

116/488

In Knowledge Builder, the "Delete" action type is preconfigured for object lists:

Like any other configuration in Knowledge Builder, the default configuration can be replaced

with a customized configuration, containing the specified "Delete" action type.

1.3.3.2.3 Action type "Search"

This action triggers a search. This function has been integrated into the menu bar of object

lists in the KB (shortcut Ctrl + S):

When used for the configuration of the web front-end, the action is assigned to an action by

means of the drop-down menu under the entry “Action type:”

Technical Handbook 5.8

117/488

Tip:

• If a search function with string input (keyword search) is required for the web frontend,
then the search field element or the query element in the view configuration mapper

can be used. An input line and search button are preconfigured for search field view

and query view as well. For the search field view, the search result can be displayed by

means of a search result view which is influenced by the search field view.

• Furthermore, a "Query" view can be used which combines search input field and search
result view into one element. As long as the search input field is not required to be

situated apart from the search result, using this view is recommended.

1.3.3.2.4 [Action type "Tag"]

1.3.3.3 Actions for the Knowledge Builder

These action types can only be used for configurations in the Knowledge Builder.

Note: The KB-specific action types are only available in the “KB” tab of an action from KB

version 5.2.2 or higher. Since these action types are all used per default for object lists and

the Knowledge Builder start page nevertheless, they mainly are for configuring menus with a

reduced amount of actions or for completion of customized actions by additionally using the

standard action types.

1.3.3.3.1 [Action type "Create relation target"]

1.3.3.3.2 Action type "Save query results"

If searches are executed in the Knowledge Builder by means of a structured query, you can

save the results by clicking the button in the menu bar:

This action saves the query result in a folder you can choose:

Technical Handbook 5.8

118/488

Note: The saved search is an object list based on the configuration of a structured query re-

lating to currently existing semantic elements. If changes are made to the relevant elements

after the search result has been saved, this will have an effect on the saved results as well:

When the relevant element is deleted, it no longer exists in the saved search result.

1.3.3.3.3 Action type "Refresh view"

In the KB, an action with the action type "Refresh view" recalculates the visible content of

table cells. This option provides a preconfigured action that is available via the “Update”

button in the object list menu bar (shortcut: F5).

1.3.3.3.4 Action type "Print"

This action is used in the menu bar of list views. The preset configuration can be used to

print out object lists or output them in an Excel table, without having to create an export

mapping.

Technical Handbook 5.8

119/488

The “Print” action opens the Print dialog in Knowledge Builder.

The Print action is also available in the results lists of structured queries. When configuring

individual views in Knowledge Builder, the action must be added to the respective view or

configuration element:

The prerequisite for being able to use the action type “Print” is that the Printing component

exists, which can be installed retrospectively via the Admin tool if necessary.

The configuration of the printing component is available within the "TECHNICAL" part of the

Knowledge Graph. There, printing templates can be defined using document templates. For

more information, see the respective chapter "Reports and printing".

Technical Handbook 5.8

120/488

1.3.3.3.5 Action type "User guide"

The action type "User guide" provides a preconfigured action that opens the i-views web

manual in the browser.

In contrast to the “Web-link” action type, this is a link to a preconfigured address, like the

“Homepage” action type.

Setting options

Name Value

URL Preconfigured weblink to the i-views manual.

1.3.3.3.6 Action type "Homepage"

This action type can be used for the start view of the KB. The home page is opened in the

browser.

Technical Handbook 5.8

121/488

Setting options

Name Value

URL Link to a website

1.3.3.3.7 Action type "Show in tree"

The Show in tree action can be used to display the location of an element from the Knowledge

Graph. Executing this action has the effect that the location of an element (e.g. an entry in

a list view) appears at the corresponding point in the structure tree of the organizer (left

column of the KB) and opens in the details view of the element.

1.3.3.3.8 Action type "E-Mail support"

This action type can be used for the start view of the KB. The actions contained open a dialog

in which you can send an email to the configured address.

Technical Handbook 5.8

122/488

Setting options

Name Value

URL Email link

1.3.3.3.9 Action type "Web link"

The “Web link” action type can be used for the start view of the KB. It differs from the “Home-

page”, “E-Mail support” or “User guide” action type in that way that you can assign any web

address as the hyperlink.

Note: In later KB versions (KB 5.2.2) the “Web link” action type is only available on the “KB”

tab - see following picture.

Setting options

Name Value

Technical Handbook 5.8

123/488

URL Address of the web link.

Note: If the URL attribute is not displayed, it can be added by editing the action in an uncon-

figured editor view.

1.3.3.3.10 Action type "Recently accessed objects"

Shows the objects (semantic elements) that were last used in the respective table. Objects

might be filtered depending on the definition of the table.

In Knowledge Builder, this action is preconfigured for list views and can be called up using

the key combination Ctrl+R.

1.3.3.3.11 Action type "New"

The new action creates new types or new objects in the Knowledge Graph. The new action is,

for example, used in the menu bar of object lists in the Knowledge Builder.

Technical Handbook 5.8

124/488

Note: For the web frontend, a script must be used instead of the action type "New". For

more information, see the chapter “JavaScript-API”.

1.3.3.4 Actions for the viewconfiguration mapper

The actions for the ViewConfiguration Mapper can only be used for the web front-end and

are split into different action types.

1.3.3.4.1 Action type "Cancel"

The action type "Cancel" is used in the web frontend to cancel a started transaction.

Example: A menu action with the option "transaction: begin" is configured to create a tem-

porary object for displaying it in a dialog. A subsequent action with the option "transaction:

commit" (mostly in combination with the action type "Save") completes the transaction and

persists the object, whereas an action of the action type "Cancel" cancels the transaction and

rejects the temporarily created object.

1.3.3.4.2 Action type "Show"

This action initiates a re-calculation of a suitable view for the semantic object that is the target

of the action. You typically use this action if you want to change the view. The result of the

action is the new view.

You can use “Show result in panel” to determine in which panel the view is to be displayed.

Technical Handbook 5.8

125/488

The “Activation mode” determines the update behavior of the view:

De-

fault

The target panel is activated (= made visible) after the action execution, regardless of

whether it was activated before the action or not. If the target panel is connected to

other panels with an "influences" relation, those panels will be activated aswell and

provided with new content. The action result will be the newmodel of the target panel

and its influenced panels. This mode is useful e.g. for showing a dialog panel.

If there is no configured activation mode, this mode will be used as default.

Re-

fresh

view

only

The target panel is only refreshed, if it was already visible before the action execution.

Furthermore, no additional panels will be activated through "influences" relations. The

action result has no influence on the panel’s content: the same model will be shown,

but the view may change due to side effects of the action (e.g. because a query now

yields more results or a shown object received new properties).

Technical Handbook 5.8

126/488

Re-

fresh

model

and

view

The target panel is only refreshed, if it was already visible before the action execution.

Furthermore, no additional panels will be activated through "influences" relations. The

action result becomes the new model of the target panel and replaces the previous

model.

1.3.3.4.3 Action type "Selection"

This action corresponds to the “Display” action, with the only difference being that the action

is executed on the parameter “selectionElement,” i.e. on a selected element.

Note: This effect also applies to any script that might be available.

The “Selection” action is used only (but not necessarily) in order to call up a display from

another panel when clicking on a table entry or list entry in a search result. This is often used

to display detailed information on a semantic element.

Example

Keep in mind that the respective “Selection” action specifies the panel that this action is sup-

posed to affect. This is specified under “Show result in panel.”

1.3.3.4.4 Action type "NN-Expand"

NN-Expand is an action type that makes it possible to expand a graph node in the Net-

Navigator. This means that you can see all the nodes that are connected to this node via

a relation and that are permitted by the graph configuration. The affected relations between

the nodes are also displayed. Nodes that are already displayed in the Net-Navigator only

display the relevant relations in addition.

Technical Handbook 5.8

127/488

Display with a plus sign as shown in the image below is the default setting. If you click on

the plus button and it involves too many relations, a dialog window appears, and that dialog

window has also been configured already. In this dialog you can choose which nodes should

be displayed.

In the graph configuration this action is attached to all node categories that are supposed to

be equipped with it. A menu that can contain all NN actions is created on the “Node” tab. In

the action itself, it is only necessary to select the “NN-Expand” action type, all other specifica-

tions are optional. Further action types are available from the neighboring “...” button.

Technical Handbook 5.8

128/488

1.3.3.4.5 Action type "NN-Hide"

With the configuration of this action type, a menu button is provided in the graph nodes that

hides the selected graph nodes and its displayed relations one time (see crossed-out eye in

the image). The node can, for example, be displayed again when another connected node is

expanded.

The NN-Hide action is configured like the NN-Expand action, but “NN-Hide” is chosen as the

action type instead of “NN-Expand”. In order to configure more than one action type on a

node, multiple actions must be created for a menu.

Technical Handbook 5.8

129/488

1.3.3.4.6 Action type "NN-Pin"

The NN-Pin action is used to configure a menu button that allows a node to be pinned down

in the Net-Navigator. When the graph is automatically restructured, for example when ex-

panding another node, the node that was pinned down remains in its position. Despite this,

the node can be repositioned manually and the pin is released when the graph is reloaded.

Clicking on the pin again also releases it again. The “pinned” status is displayed by a change

in the graphic (the pin points downwards instead of lying at an angle).

The configuration of the action type is performed as described in the “NN-Expand action”.

Technical Handbook 5.8

130/488

1.3.3.4.7 Action type "Save"

The Save action stores the form data from the web front-end in the Knowledge Graph. The

web front-end automatically recognizes the action type and sends it to the configured view.

If no view has been defined as the recipient of the action, the web front-end tries to find a

suitable view in a neighboring panel.

To do this, the action type “Save” is assigned to the action in a menu:

The Save action can be used, for example, to replace the individual Save buttons in several

edit fields in a dialog with a customized Save button.

Note: If you want to to use the save-action to do more than just to save (e.g. add another

object to the object you just edited), you have to use "Script (after action)" instead of "Script".

The reason is that otherwise the save action would be overwritten by the script action.

1.3.3.4.8 Action type "Print"

Like in the Knowledge Builder, the Print action is used for generating documents based on

the shown model. The difference is that no configuration dialog is shown to the user. The

necessary settings therefore need to be configured at the action configuration. Prerequisite

for using the Print action is the availibility of the printing component, which can be installed

using the admin tool.

Depending on which kind of view is used to execute the print action, the behavior is slightly

different:

• Table print: If the action is performed by a table or search view, a table print based
on the columns and content of the respective table is executed. If the print action is

not connected to a print template, a new .xlsx document is generated, otherwise the

table content is embedded in the provided template file. In both cases the filtering and

Technical Handbook 5.8

131/488

sorting of the table is respected, but all elements are printed regardless the configured

pagination of the table.

• Element print: If the action is performed by any other view, the element which is the
model of the respective view is used as the basis for the generated document. In this

case the configuration of a print template is mandatory. This mode is also used for print

actions that are configured in table rows. In that case they refer to the respective row’s

element.

For a print action, the desired file name and target format can be configured. A configured

target format requires a suitable converter configuration from the template’s source format

to the target format. For more information regarding the configuration of print templates

and converters, refer to the chapter on "Reports and printing".

1.3.3.5 Internal actions

The use of internal actions requires expert knowledge.

If in doubt, please contact i-views support: support@i-views.com.

The actions listed here are only included for reasons of completeness. This includes actions

such as:

• Sort action
• Jump action
• Create target action
• Script action: If there is a script on an action, it causes it to be executed automatically,
and therefore overwrites the integrated function of the respective action type.

1.3.3.6 Scripts of actions

1.3.3.6.1 Script (custom)

This script is executed when the action is triggered. The script may modify elements of the

knowledge graph and compute the result of the action which is usually the model to be

visualized in the defined target panel(s).

The script may also read and modify session variables or view state.

function customAction(action, actionResult) {
}

Arguments

action $k.Action - The object representing this action.

actionResult $k.ActionResult - The result of the action.

Parameters of the action can be accessed by the corresponding functions of the action object

(see JavaScript documentation).

The view ($k.View or sub-classes) executing the action can be accessed in the script as "this"

object.

Technical Handbook 5.8

132/488

1.3.3.6.2 Script (actionResponse)

The purpose of this script is to provide a custom response to customized fronted-implementations.

For standard ViewConfigMapper this script must not be used.

This script is executed after the action has been executed. Its main task is to prepare the

result of the action for the ViewConfigMapper (or other front-ends). The script must return

an object of the type $k.ActionResponse.

function actionResponse(element, context, resultModel) { var actionResponse = new $k.ActionResponse();

actionResponse.setData(resultModel);
actionResponse.setFollowup("new");
actionResponse.setNotification(“done","warn");

return actionResponse;
}

Arguments

element The semantic element in the context of which the action is executed

context (depre-

cated)

More predefined variables that describe the context of the action in

more detail

resultModel The result model of the action result.

ActionResponse

The ActionResponse can be supplemented with values for Followup / Data and Notification.

These values can be evaluated by other applications such as the ViewConfigMapper.

In the Knowledge Builder, the following values for Followup are possible in tables:

re-

fresh

Renders the current table again without recomputing the list

up-

date

Recalculates the table

show-

element

Selects the element in data in the table. Alternatively, the “data” element can handle

an object by means of {"element": actionResult, "viewMode": "edit} in order to open

the result in a new Detail editor.

Followup is not evaluated in detail editors.

1.3.3.6.3 Script (actionVisible)

function actionVisible(element, context) { return true;
}

Technical Handbook 5.8

133/488

The return value is used to decide whether the button is displayed or not.

In the case of actions on the elements, the following function is called up in tables, which

transfer an array of elements and expect an array of Boolean values. This can be used to

compute the visibility for the elements more efficiently in one go.

function actionsEnabled(elements, contexts) { return elements.map(function (element, index) { return actionVisible(element, contexts[index]);
});

}

1.3.3.6.4 Script (actionEnabled)

function actionEnabled(element, context) { return true;
}

The return value is used to decide whether the button is active.

In the case of actions on the elements, the following function is called in tables, which transfer

an array of elements and expect an array of Boolean values:

function actionsVisible(elements, contexts) { return elements.map(function (element, index) { return actionVisible(element, contexts[index]);
});

}

1.3.3.6.5 Script with UI specific actions

The script that implements the action can access UI-specific functions in the Knowledge

Builder using context.ui.

UI functions should not be executes within transactions when possible, as the display is not

updated within the transaction.

context.ui.alert(message, windowTitle)

Shows a message.

context.ui.requestString(message, windowTitle)

The user can enter a string.

context.ui.confirm(message, windowTitle)

Opens a cancel dialog.

context.ui.choose(objects, message, windowTitle, stringFunction)

Have an object selected from a set.

context.ui.openEditor(element)

Open the default editor for the object.

Technical Handbook 5.8

134/488

context.ui.notificationDialog(notificationFunction, parameters, windowTitle)

A wait dialog or notification dialog is opened. Depending on how it is configured, it can be

canceled.

Possible parameters:

Parame-

ter

Description Default

value

autoEx-

pand

The dialog display area is opened initially. true

canCan-

cel

The dialog can be canceled. true

stay-

Open

The dialog remains open after the end of the function. true

Example:

ui.notificationDialog(
function() {

ui.raiseNotification("start");
for (var i = 0; i < 10; i ++)

ui.raiseNotification("" + i + "*" + i + "=" + (i*i));
ui.raiseNotification("end");
return undefined;

},
{ "canCancel" : false },
"A wait dialog"

)

Messages can be output in the display area using the following raiseNotification function.

$k.UI.raiseNotification(message)

This message is only captured by the notificationDialog function, and the message is only

output in the display area there.

1.3.3.7 Action sequences

Often wemight want to summarize the changes that the user makes to the Knowledge Graph

and that are split into several sequential actions.

Example: In one action, a new product is created, and in the next action the properties of

the product are described. Aborting the second action would create a product without a

description in the Knowledge Graph.

What is required is an “All or nothing” behavior to ensure that either all actions that belong

together are executed or that none of them are. You also want to ensure that other users can

Technical Handbook 5.8

135/488

only see the change to the Knowledge Graph once it has been completed. You can achieve

such behavior by encapsulating the actions in a “Transaction”.

In order to summarize a sequence of actions in a transaction, you mark the first action with

“Transaction - begin” and the final action with “Transaction - commit”.

Caution: The transaction is started only if the first action actually modifies the Knowledge

Graph. When creating new objects in a sequence of actions you also have to ensure that the

order of newly created objects is deterministic, so whenever an action script is repeated the

creation order is the same as before. If the set of created objects varies dependent on the

actual situation, make sure to sort the originating set in a deterministic way before creating

the objects (e.g. by idString()).

The transaction commit can also be brought about dynamically via the “setTransactionCom-

mit()” script function.

If the transaction is to be canceled, you can achieve this by means of an action of the “Cancel”

type. Canceling means that all previous changes to the Knowledge Graph conducted within

the transaction are undone. The “setFailed()” script function can be used to dynamically initi-

ate a cancellation.

As a transaction is always coupled to the duration of a session, a transaction is canceled

automatically when the session ends in which the transaction was started. If, for example,

you open a dialog at the start of the transaction and the dialog is closed before the transac-

tion was completed, the transaction is canceled automatically. This does not apply to dialogs

that are opened while a transaction is already running, because this creates a new session

on the session stack. Dialog sequences (one dialog is closed and another dialog is opened

immediately) do not interrupt the transaction either.

1.3.4 View configuration elements

A view configuration describes how objects or types are to be shown. The different element

types that are available in the view configuration are described in the following.

The individual view configuration elements can, in part, be plugged together in any way. The

configurations can also be used multiple times as a sub-configuration.

List of the different detail configuration types

Configuration type Top-level config-

uration

Can include the following sub-

configuration

Alternative x any

Property

Properties x property

Layout x any

Hierarchy x any

Script-generated content x

Static text

Search Table

Technical Handbook 5.8

136/488

Setting options that all detail configuration types have in common

Name Value

Configuration name This is not used in the user interface. The user who cre-

ates a configuration has the option of assigning a name

that is comprehensible for the user in order to be able to

find this configuration more easily later on, and to be able

to use it again in other configurations.

Script for window title Only for use in the Knowledge Builder. If an object is, for

example, opened by double-clicking in the object list, a

window with the properties of this object opens. The title

of this window can be determined using a script.

Note: The setting options for the individual configuration types are described in the following

sections. The obligatory parameters are printed in bold.

1.3.4.1 Alternative

An alternative is used to configure many different alternative views on an object. You can use

tabs to switch between the views in the application.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse

of the configuration.

Label A label is only used if this configuration is embedded in an-

other configuration, e.g. an additional alternative.

Script for label The Script for label is used for dynamic computing of the la-

bel. This script is only available, if no entry exists for "Label"

Default alternative The sub-view that is supposed to be selected initially can be

specified here.

Script for default alternative .

Technical Handbook 5.8

137/488

Restore last selected alter-

native

If enabled, the lastly selected tab keeps selected, even if a

change of view occured.

Script for visibility This script is used to compute dynamically, if the view needs

to be visible or not.

Display in an application

If the views are exported into JSON, the individual sub-views are attached to the alternatives

KEY in an ARRAY.

Example of an alternative in an application: You can use the tabs to switch between the views “Tab

1” and “Tab 2”.

Display in Knowledge Builder

In Knowledge Builder, the various configured views of an object that are linked to the alter-

native are made available to users by means of tabs

Example of an alternative in Knowledge Builder: You can use the tabs to move between the view

“Details” and the view “Knowledge and Skills”

Configuration of tabs

If a view configuration of the “Alternative” type has been created, you can use the button

“Create new objects of object configurations” to add a new tab.

Technical Handbook 5.8

138/488

It usually makes sense to use the view configuration type “Layout” as the tab as any number

of view configurations can be placed therein. The label of the view configuration is also the

label of the tab.

1.3.4.2 Layout

A layout can be used to summarize different sub-configurations in one view. The subele-

ments are then shown in order.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse

of the configuration.

Label A label is only used if this configuration is embedded in an-

other configuration, e.g. Alternative.

Orientation Defines whether subviews are stacked horizontally or verti-

cally. The default behavior is horizontal orientation.

Script for visibility A script that determines whether the layout is displayed or

not.

Display in an application

Technical Handbook 5.8

139/488

Display in Knowledge Builder

A frame is drawn around a layout in the Knowledge Builder. This frame then shows the views

of the sub-configurations.

A layout detail view adjacent to the tree view with the following sub-configurations: Image view

“Image with label”, text view "Details" and string property "Text", contained in a vertically oriented

layout on the left side. On the right side, a second layout with vertical orientation of properties is

shown.

1.3.4.3 Hierarchy

The configuration type “Hierarchy” displays elements of a Knowledge Graph as a hierarchy in

a tree structure, in which individual branches can be expanded and collapsed.

Either relations or relation targets can be used for work. The hierarchy is structured from

Technical Handbook 5.8

140/488

the start element of the view configuration, for which all subordinate relations or objects and

their subordinates must first be determined. After this, the higher-level relations or objects

are determined for each element. This element result set is then shown in the hierarchy.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse

of the configuration.

Label A label is only used if this configuration is embedded in an-

other configuration, e.g. Alternative.

Script for label It is also possible to define a label using a script.

Icon Sets the icon for all nodes of the hierarchy.

Script for icon Returns an element icon as blob to be displayed for nodes

of the hierarchy.

Show parent banner Only relevant for the Knowledge Builder: Banner is dis-

played.

Do not show detail view Per default, a standardized detail view is displayed besides

the hierarchy view which shows the details of the selecetd

element. This option suppresses the detail view from being

displayed.

Restore last expanded

nodes

If enabled, the last expanded nodes stay expanded for

one and the same context element during the whole web-

frontend session.

Click action Reference to an action that is called when a hierarchy ele-

ment is clicked.

Script for visibility Determines whether the whole hierarchy view is visible or

not.

Generate subelements

without name query

When new subelements are generated in the hierarchy,

what their name should be is queried by default. A check-

mark here generates nameless objects without a name

query.

Traversal

Structured query (down) Structured query for determining the subordinate element.

Structured query (up) Structured query for determining the superordinate ele-

ment.

Script (down) Script for specifying a relation or a relation target to deter-

mine the element node of the lower hierarchy level.

See example below.

Technical Handbook 5.8

141/488

Script (up) Script for specifying a relation or a relation target to deter-

mine the element node of the upper hierarchy level.

See example below.

Relation (down) Relation half which points downwards.

Relation (up) Relation half which points upwards.

Output up to depth .

Sort

Sort downward Controls if sorting is in ascending or descending order. If

this parameter is not set, sorting occurs in ascending order.

Primary sort criterion Selection option for the criterion used for sorting the prop-

erties:

• Position: The order defined in the configuration is
used (default).

• Value: The content of the attribute or display name of
the relation target is used.

• Script for sorting: The script saved in the attribute
Script for sorting is used for determining the sort cri-

terion.

Secondary sort criterion Sort criterion for properties which have the same value for

the primary sort criterion. The setting options are analo-

gous to those for the primary sort criterion.

Script for sorting Reference to a registered script that returns the sort key for

the primary or secondary sort criterion.

Disallow manual sorting By default, the user can reattach elements in the Knowl-

edge Builder to the schema by means of Drag&Drop. If this

option is activated, this is no longer possible.

KB

Creating elements without

question by name

If enabled, the menu directly above the hierarchy allows

creating subelements without asking the user for a name

of the new element.

Actions and styles

Actions and styles can be attach for both the entire hierarchy and for the individual nodes.

From version 5.2 or higher, style classes can be automatically assigned using a script.

Display in an application

The JSON representation of a configuration of type hierarchy is only available from version

4.1 or higher.

Technical Handbook 5.8

142/488

Display in Knowledge Builder

A hierarchy appears in the area on the left in the detailed display of an element. The element

is displayed with a view configuration without hierarchy in the area on the right. This view

configuration must be defined separately and the configuration name of the hierarchy must

be specified under Reference >> Apply in. Alternatively, the sub-configuration can also be
specified directly in the hierarchy under Sub-configuration.

Notes

• Elements are not always represented by their name in hierarchies. It is not possible to
display anything other than the name, or information supplementing the name, directly

in the hierarchy.

• The values of all properties that can be filled out for forming the hierarchy are relations.
• The individual attributes such as relation - descending can be assigned multiple times.
• The relation or relations are determined and collected for each attribute type. If differ-
ent attribute types are specified, the subsets are used to form an intersect.

Example - application case

Technical Handbook 5.8

143/488

Hierarchies are typically used to represent supertopic/subtopic relations or part-of relations.

1. Relation that forms a hierarchy

The most direct variant. The relations that form the hierarchy are entered.

2. Structured query that forms the hierarchy

The relations can also be determined by means of a structured query.

3. Script that forms a hierarchy

A script can also be used to collect the relations that potentially form a hierarchy. The current

element is passed to it as a parameter, and it must return a set of relations. Instead of

working on relations, working on elements is also possible.

Script example for relation with internal name ’is SubcomponentOf ’:

Option a): Using relations

function relationsOf(element)
{

return element.relations(’isSubcomponentOf’);
}
function targetsOf (element)
{

return undefined;
}

Option b): Using relation targets

function relationsOf(element)
{

return undefined;

Technical Handbook 5.8

144/488

}
function targetsOf (element)
{

return element.relationTargets(’isSubcomponentOf’);
}

Note: Please be aware that only the usage of relations or relation targets in one and the

same script makes sense; otherwise each hierarchy node will appear twice. The other part of

the script keeps unchanged and returns "undefined".

1.3.4.4 Tree

Just like a “hierarchy,” a “tree” is based on the configuration of a hierarchical tree structure. In

contrast to a hierarchy, a tree can also include static nodes. Hence, it is possible to create a

tree without a Knowledge Graph source element. Another difference is that the sub-nodes of

a “tree” can be configured differently whereas all nodes of a “hierarchy” respond in the same

way for a given semantic element.

A tree configuration generally distinguishes two types of nodes:

• Static hierarchy node: Nodes of this type always exist if there is a connection to the
root of the tree. The “context element” relation can be used to optionally integrate the

node into a semantic element.

Note: The top node of a tree is always static and always invisible.

• Hierarchy node patterns: This type can map several nodes for each level. A node is
formed for each relation target that can be reached from an element of the higher-level

node. You can set the property “transitive” to map several levels. You can the property

“apply to” to restrict to which element types the node pattern is applicable. Otherwise

the node pattern can be applied to all elements that fall into the target validity area of

the configured relations.

As an alternative to determination via a relation type, sub-nodes can be determined

Technical Handbook 5.8

145/488

using a structured query. The structured query begins with the element of the parent

node. The subordinate nodes are determined by the part of the query that is marked

with the predefined identifier “subnode”. If you want to use the “Transitive” option,

the corresponding relation in the query must be marked with the predefined identifier

“subnodeRelation”.

The sorting of tree nodes can be configured in the same way as that of the “hierarchy.” How-

ever, this configuration does not globally apply to the tree but each node configuration ap-

plies to the respective sub-nodes.

Finally, the image and label displayed can be configured for each node type, either directly

or via script.

Setting options

Name Value

Configuration name The configuration name is used for identification and

reuse of the configuration.

Label A label is only used if this configuration is embedded in

another configuration, e.g. Alternative.

Script for label Script that returns a string for the label instead of using

the label attribute.

Do not show detail view Per default, a standardized detail view is displayed be-

sides the hierarchy view which shows the details of the

selecetd element. This option suppresses the detail view

from being displayed.

Note: The standardized detail view can be replaced by

configuring a customized view.

Disallow manual sorting By default, the user can reattach elements in the Knowl-

edge Builder to the schema by means of Drag&Drop. If

this option is activated, this is no longer possible.

Restore last expanded nodes If enabled, the last expanded nodes stay expanded for

one and the same context element during the whole web-

frontend session.

Script for visibility Script that returns a Boolean value for whether the view

is to be displayed or not.

Sort configuration

Sort downward Controls if sorting of subnodes is in ascending or de-

scending order. If this parameter is not set, sorting occurs

in ascending order.

Technical Handbook 5.8

146/488

Primary sort criterion Selection option for the criterion used for sorting the

subnodes:

• Position: The order defined by the Sort order meta
property of involved relations is used

• Script for sorting: The script saved in the attribute
Script for sorting is used for determining the sort cri-

terion.

• Value: The display name of the relation target is
used.

Secondary sort criterion Sort criterion for subnodes which have the same value for

the primary sort criterion. The setting options are analo-

gous to those for the primary sort criterion.

Script for sorting Reference to a registered script that returns the sort key

for the primary or secondary sort criterion. Attention:

if there are several different sub-node configurations, the

script is potentially called with instances of different types

and should be formulated in a correspondingly general

way.

KB

Script for window status Returns a status label for the window footer when the de-

tail view within the Knowledge Builder is opened in a new

window.

Script for window title Returns a label for the window title when the detail view

within the Knowledge Builder is opened in a new window.

1.3.4.5 Properties

The Properties configuration is a list of individual configurations. The sub-configurations can

be exclusively of the Property type, each of which is linked to an attribute or a relation of a

Knowledge Graph object or type.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse

of this configuration.

Label Display name of the collection of properties. If no label

is specified, the string Properties is used in Knowledge

Builder.

Script for label Alternatively, the display name can also be determined via

a script.

Technical Handbook 5.8

147/488

Initially expanded If this configuration in included e.g. as ameta-configuration,

this parameter can be used if this is supposed to be ex-

panded already when opening Knowledge Builder.

Note: The web frontend does not display the affected

meta-property if the checkmark is not set here.

Script for visibility Control of the visibility of the properties by a script.

Setting options for sorting

Name Value

Sort downward Controls if sorting is in ascending or descending order. If

this parameter is not set, sorting occurs in ascending order.

Primary sort criterion Selection option for the criterion used for sorting the prop-

erties:

• Position: The order defined in the configuration is
used (default).

• Script for sorting: The script saved in the attribute
Script for sorting is used for determining the sort cri-

terion.

• Value: The content of the attribute or display name of
the relation target is used.

Secondary sort criterion Sort criterion for properties which have the same value for

the primary sort criterion. The setting options are analo-

gous to those for the primary sort criterion.

Script for sorting Reference to a registered script that returns the sort key for

the primary or secondary sort criterion.

Display in applications

The views of the configuration of individual property elements are stored in an ARRAY during

output in JSON format and appended with the KEY properties.

Display in Knowledge Builder

The label set in the configuration is displayed prominently. This is followed by views of the

configured properties.

Technical Handbook 5.8

148/488

Note

Meta properties are appended using the same process.

1.3.4.6 Property

The Property view configuration can be used to define individual attributes or relations to be

displayed in a list of properties. It is also possible to use an abstract property that groups a

set of properties.

Setting options

Name Value

Configuration name The configuration name is used for identification and

reuse of this configuration.

Label Display name of the property. If no label is specified,

the name of the property type is output.

Script for label The label can be determined by means of a script spec-

ified here.

Property Link to the property type that is to be displayed.

Query for virtual properties Alternative to Property : Instead of defining the por-

perty, a query can be used which returns the needed

kind of property. This comes in handy when the prop-

erty is not directly assigned to the object.

Script for virtual properties Alternative to Property : Script for calculating the values

to be displayed.

If you set the “Automatic updates”meta flag, the KB is

automatically updated when a value on which a calcu-

lation was based is changed.

Caution: if you set this flag, this can have a significant

effect on performance, depending on the script.

Technical Handbook 5.8

149/488

Display type Available in two cases:

1. The property is a relation:

Selection option for the display of the label of a relation

target. This setting is only available if the Relation target

view setting has the value Choice or Relation structure.

2. The property is a file attribute:

Selection option for the display of the value in a file

attribute.

Selection options:

• Icon (topicIcon): Icon of the relation target / file
as an icon

• Icon and string
• String (name attribute: Name of the relation tar-
get / name of the file

Show filter Only relevant in the view for editing objects: This option

can be used to create a prompt that decides whether

this configuration is displayed. The prompt is filled with

the object of this property. The property is displayed

for editing only if the prompt receives a result.

Technical Handbook 5.8

150/488

Show new properties Only relevant in the view for editing objects.

There are following options:

• never: If this option is set, the respective property
is only shown if already assigned. If the property

value of a shown property is erased without re-

placement by another value, the property edit line

is faded out. In order to show new properties, this

is done by clicking on the button "Add attribute or

relation".

• if not available yet: If this option is set, the

property is shown only if the property has not

been created yet. This makes it quick and easy to

complete and less easy to forget.

• always: If this option is set, another property is
shown in addition to the property of the same

type, so this can be filled quickly and conveniently.

It must be permitted for the property to occur

multiple times.

Note: If no option is chosen, the behaviour equals the

"never" option. The formerly available setting "Show

additional properties" from previous i-views versions

(5.3 and earlier) is incorporated into the option "al-

ways".

Configuration for embedded

meta properties

Specification of the configuration to be used to display

meta properties. The meta properties are embedded,

i.e. the property is displayed after the value. The name

of the property type is not displayed.

Technical Handbook 5.8

151/488

Configuration for meta proper-

ties

Specification of the configuration to be used to display

meta properties. Themeta properties are displayed un-

der the value of the property.

For display in the web front-end, the properties with the

meta properties must be set to “initially expanded.”

Click action .

Script for visibility The conditions under which the property is displayed

can be defined via JavaScript.

Relation target (only available for relations)

Relation target view If a relation is chosen as the property, this parameter

can be used to define the view of the relation targets:

• Choice: All relation targets are listed and dis-
played with a preceding checkbox. In case of ex-

isting relations, the checkbox is equipped with a

tick.

• Drop down: This setting is only useful if the re-
lation may appear only once. A drop-down list is

displayed showing all relation targets available for

selection.

• Relation structure: All relation targets are listed
in the left area, rather like a hierarchy. The right

area then shows the details view for the selected

relation target. This view is only effective if the

configuration is directly subordinate to a top-level

configuration.

• Table: Table view of the relations. The table view
can not be applied in the Knowledge Builder. For

the table view, the Table setting must be filled in.

• Table (relation targets): Table view of the relation
targets. This table can be applied in the Knowl-

edge Builder.

Table Only available if the Relation target view has the value

Table or Table (relation targets), in which case it is obliga-

tory. The table configuration specified here determines

which properties of the relation targets are to be output

in table form. For the relation target to be displayed, at

least its name must be configured in the table. For con-

figuration of a table, see the Table chapter.

Relation target filter Query for filtering the relation targets to be shown.

Technical Handbook 5.8

152/488

Relation target type filter Query for filtering the relation targets by their type.

Script for relation target label Script which returns a dedicated string for the relation

target label. If not used, the primary name of the rela-

tion target is shown as label.

Example: A person belongs to a department with the

name Dpt. IV . Using a suitable script, it is possible to

change the output for the person fromDpt. IV to Darm-

stadt city administration, Dpt. IV .

Show relation target Only available for relations.

By default only the name of the relation target is dis-

played. When you click the name, the relation target

opens in another editor.

But if you choose the Show relation target option, the re-

lation targets are shown directly, which means not just

their names, but also all their properties.

Display

Tooltip Tooltip which appears when hovering the mouse

pointer over the relation target.

Placeholder text A placholder text which is shown in light grey when the

relevant string attribute has no attribute value yet.

Script for placeholder text Script which returns a string for the placeholder text in-

stead of a statically configured placholder text.

Script for tooltip Script which returns a string for the tooltip instead of a

statically configured tooltip.

Sort

Script for sorting The script is used to determine a value for sorting. See

the example below.

Sort downward Controls whether the properties are sorted by name in

ascending or descending order. If this parameter is not

set, sorting occurs in ascending order.

Note: Options either can be set by defining their value or, if available, by an equivalent script.

Option value and script cannot be used at the same time.

Configuration of a property

A property can only be configured as part of a list of properties. It is acceptable for the list to

contain only one property.

Technical Handbook 5.8

153/488

In this example, the properties view configuration already contains the “Name” property. A sec-

ond property is created by selecting an attribute or a relation for the entry “Property” (marked in

orange).

Assorted property display for an object

If an object has several properties of the same type, they will be displayed in alphabetical

order by default. If nevertheless the display order of the properties needs to be different (e.

g. in order to emphasize preferences for synonyms or for forenames), a dedicated metaat-

tribute can be attached to each property.

The sortKey attribute can be displayed for editing purposes by configuring a meta properties

view:

Note: In case of the Synonym attribute, the value 2 is entered for sortKey, so this value is

temporarily shown at the end of the list.

For this purpose, an attribute with the internal name ’sortKey’ needs to be defined which can

be applied to each individual property:

Technical Handbook 5.8

154/488

The sortKey attribute is then referenced by a script for sorting which is attached to the prop-

erty view configuration:

Technical Handbook 5.8

155/488

Example of a script for sorting:

function sortKey(element)
{

if (element instanceof $k.Property)
{

var attribute = element.attribute(’sortKey’)
if (attribute)
{

return attribute.value();
};

};
return undefined;

}

1.3.4.7 Edit

This configuration type is used to make attributes and relations of a Properties configuration

editable. For this purpose, it is assigned to the relevant Properties element at a higher level.

Technical Handbook 5.8

156/488

Next to a button for saving changes, a Delete button is displayed next to every property

where this is possible.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse

of the configuration.

Label A label is only used if this configuration is embedded in an-

other configuration, e.g. Alternative.

Script for label .

Edit mode switchable If this option is selected, the properties are first displayed

only as a normal list. However, a switch is offered as an

addition, which can be used to switch between the normal

view and the edit view.

Only custom buttons If this option is set, the Save button is not displayed.

Script for visibility .

1.3.4.8 Table

Tables can be used as a sub-configuration for displaying results of queries of the configura-

tion type “Query,” or as a separate configuration for displaying the object lists in the Knowl-

edge Builder.

A table lists specific objects, properties or subtypes of a specific type. Whether all objects,

properties or subtypes, or only a selection, is displayed, can be managed using the input in

the heads of the columns. The values entered are used to execute a structured query accord-

ing to suitable objects, properties or subtypes and display the result as a table. Moreover, in

the case of object lists, a new object, a new property value or a new subtype can be generated

with the properties that were filled in after entering values in the heads of the columns.

A subcomponent of the table configuration is the column configuration. This, in turn, con-

tains a column element or a menu cell. This layout is used to separate properties relevant to

the column (such as order and name of the column in the table) and to assign which con-

tents should be displayed in the column. Column elements, in turn, allow the assignment of

properties, script modules and structured query modules.

Since version 5.1, not only column configurations, but also additional tables can be added

to a table configuration. This provides the option of summarizing frequently used columns

in a table configuration and add them to another table in full. The intermediate tables are

removed when determining the overall table. There is only one level of columns.

Technical Handbook 5.8

157/488

The hierarchical display of all sub-configuration elements in the table configuration exhibits

a menu line that is assigned with actions as follows:

• Create and link a new subelement.

• Search through all potential subelements that already exist and link (= add) the

slected subelement.

• Delete link again. When this occurs, the subelement is retained as an object and can

be used again in other configurations.

• Delete complete subelement selected. If used in other configurations, a warning will

appear before deleting which highlights all existing links.

• Move selected subelement up in the list.

• Move selected subelement down in the list.

Note: The availability of an action depends on the currently selected table element in the

hierarchy on the left side.

Example of a simple table configuration

For a list of objects, certain properties should appear in a table. The name attribute used to

represent the objects in the first column should not be forgotten.

Technical Handbook 5.8

158/488

Setting options (table)

Name Value

Configuration

Configuration name The configuration name is used for identi-

fication and reuse of the configuration.

Label Defines a static heading for the table.

Click action Determines an action which is performed

when clicking into a table row.

Script for label Script which returns a string as substitute

for the label.

Without initial sorting No sorting occurs. Default process: the

first column is used for sorting.

Sort order For instance lists in the Knowledge Builder,

each table configuration is represented in

a separate tab.

By specifying an integer, the user can con-

trol at which position the tab is displayed,

provided that several tables are config-

ured for the same instance type or for the

same folder structure element.

The tables are sorted using two criteria,

which are checked in the following order:

1. Attribute Sort order specified:

If yes, then this is used as the sort cri-

terion.

If no, then the configurations for

types are shown first, followed by

those for objects.

2. Sorting by display name

Technical Handbook 5.8

159/488

Without column filtering (VCM) Suppresses the indication of column fil-

ters in the web frontend. In the Knowl-

edge Builder, column filters are always dis-

played.

Page size (VCM) This specifies howmany rows (= search re-

sult hits) should be display on one page.

Default value: 20

Label for empty table (VCM) A label configuration which is displayed in-

stead of the original label when the table

is empty.

Script for visibility (KB) Script which returns a Boolean for

whether the table is visible or not. For in-

stance lists in the Knowledge Builder, the

whole tab will not be displayed if visibility

is set to false. In the web frontend, this

script has no effect.

Restore last column filtering/sorting (VCM) Restores the recently selected filtering or

sort order for the duration of the web

frontend session.

Structuring relation If this table configuration is embedded in

another table configuration, all columns in

this table refer to the relation targets of

the configured structuring relation. If for

example the outer table lists persons and

the inner table has "owns" as structuring

relation, all columns of the inner table re-

fer to the things that a person owns. The

configured properties of the relation tar-

gets (e.g. all category names of all owned

things) are accumulated in the column. If

a column element of the inner table de-

termines its values by script or query, the

script or query is executed once for every

relation target and the results are also ac-

cumulated in the column.

Sort

Column Column configuration for which the sort-

ing takes effect.

Technical Handbook 5.8

160/488

Sort priority An integer value determines the order by

which table column values the assortment

of the table rows will be influenced first.

Example: If an ID is more important for

sorting instances than the primary name,

the column for ID gets the sort priority

1 and the column for primary name gets

sort priority 2.

A higher sort priority overrides the sort di-

rection ("Sort downward") of another col-

umn.

Sort downward Determines if the values are sorted up-

ward (alphanumerical order) or down-

wards.

Table

Tab "Menus" For the Knowledge Builder, the menu

actions at the top of the table can be

configured here. For more information,

see chapter "Actions for the Knowledge

Builder".

Tab "Styles" (VCM) For the web frontend, different styles can

be applied on the whole table at once.

Rows

Tab "Styles" When using a table for the Knowledge

Builder, styles can be used for rows of the

table for the purpose of character format-

ting.

KB

Automatic search • Automatic search
• No automatic search: No automatic
search is performed.

• Automatic search up to threshold
(system settings)

Creating elements without question by name When this option is enabled, new ele-

ments can be created by clicking on the

button "New", without a dialog asking for

a name before creating the element. As an

indication for the missing name, a period

"." is shown as name instead.

Script for window title (KB) A script can be used which returns a

string for the window title whenthe table

is opened in a separat window.

Technical Handbook 5.8

161/488

Script for windowstatus (KB) A script can be used which returns a

string for the bottom line of the Knowl-

edge Builder application or the window (if

the table is opened in a separate window).

Without inheritance If the table is used for instance lists in the

Knowledge Builder, only the instances of

the currently chosen type are displayed,

without instances of subtypes.

Context

apply to Restricts the context to the instances of a

given element type.

apply to subtypes Restricts the context to the subtypes of a

given element type (instead of instances).

apply in Application context for within the view is

applied. For the table to be displayed

within the Knowledge-Builder at all, the

application "Knowledge-Builder" must be

selected here.

Usage Within the section "Usage", the "Context

of" relation reveals for which view the cur-

rent element is used as application con-

text. It is the counter part of the relation

"apply in" of the other respective element.

Table of Indicates the superordinate view configu-

ration element within which the table is

used.

Actions and styles

Actions and styles can be defined for the entire table, as well as for rows.

Use

The Context tab specifies where the table is used.

The object type specified under Apply to is the type to which the table should be applied.

Tables can be used again in other view configurations. If the table module is a different view

configuration, this is displayed under [inverse] Apply in.

The property Apply in refers to an application. Several links are possible.

Examples:

• If the table to the right in the main window in the Knowledge Builder is to be used by
the folder structure during navigation, then the table configuration must be linked to

the corresponding folder structure element.

• If potential relation targets are displayed as tables in the Knowledge Builder, then the
table must be linked with the Knowledge Builder application.

Tables / Object lists in the Knowledge Builder

Technical Handbook 5.8

162/488

To configure the way objects or types are displayed in a table in the Knowledge Builder,

the Details tab contains the section View configuration -> Instance/Type -> Object list next to
the respective type. Creating and maintaining the table configuration is explained using the

objects of Subtype YZ as an example.

No table configuration has yet been linked with this type. The greyed entry shows a standard

configuration which is inherited from the upmost type "Knowledge Graph" of the type hier-

archy by default. By clicking on the New button, a new, blank configuration is generated

here. The configuration can then be selected and be edited as needed. As soon as the appli-

cation context has been specified (e. g. "apply in: Knowledge Builder"), the configuration is

applicable after updating the view configuration.

1.3.4.8.1 Column configuration

As mentioned before, column configurations contain properties used to define the display

and behavior of the column in the table. The column is only displayed once properties are

configured in the column elements contained in the column configuration.

Setting options

Name Value

Configuration

Configuration name The configuration name is used for identification and reuse

of the configuration.

Technical Handbook 5.8

163/488

Label Displayed in the caption of the column. Please note that the

label is used for display in the table, but the column config-

uration also contains the configuration name attribute. This

name is used only to manage and find the configuration in-

ternally and is not displayed or output.

Script for label As an alternative to the static label text, a script can be used

which returns a string for the label.

Bookmark identifier The bookmark identifier is used to represent a query pa-

rameter in forms of an expression within the web frontend

URL. It can be used for query views and table column filters

and synchronizes parameter value and URL in both direc-

tions.

Column width (%) A percentage value is expected here for the column width

(so for 60% you have to enter “60”).

Standard operator The operator used initially in the search for a search text.

Search string Preset search text for the column filter.

Do not show If this value is set, the complete column is hidden. This is

used, for example, to sort a search result using hit qualities

without displaying them.

Mandatory for query If this value is set, the column must be filled out for the

search to be permitted.

Not sortable Prevents the table from being sorted when clicking onto the

column header.

Script for input field prepro-

cessing

For preprocessing any search text input in the column fil-

ter before passed on as parameter for the column element

query, a script can be used.

Mapping element .

Operators

Configuration name The configuration name is used for identification and reuse

of the configuration.

Symbol Symbol that will be shown in the dropdown selection of the

column filter.

Key Operator designator that defines which kind of operator is

used (e.g. "word" or "containsPhrase"). See the operators

explained in the chapter about runtime generated queries.

Label Tooltip that will be shown in addition to the symbol in case

of mouse-over.

Modifier Name of the indexer string filter.

Menus

Technical Handbook 5.8

164/488

For the column, a menu can be configured for the web frontend which is displayed besides

the label text at the label (header) of the column.

Styles

For columns, there are following style settings which can be applied within the view con-

figuration mapper:

• hideFilters: Suppresses the column filters from being displayed in the web frontend.
• hideLabel: Suppresses the column label from being displayed in the web frontend.

Context

Sub configuration of Specifies for which table configuration(s) the column con-

figuration is used.

Sort order Specifies at which order the column is arranged within the

table, compared to another column. If there is more than

one column with the same sort order, the columns are or-

dered alphabeticaly by column label.

Sorted column of Indicates that the column is used for sorting the table con-

tent.

Sort priority Specifies the sort priority of the column used for sorting,

compared to other columns used for sorting.

Example

Column configuration for the Name column

Technical Handbook 5.8

165/488

1.3.4.8.2 Column operator

The column operator configuration determines which comparison operator can be used in

the table view when entering a term into the table filter. Inmost cases, operators like "equal",

"contains phrase" or "contains string" might be needed.

For example, the difference between "contains phrase" and "contains string" is as follows:

• "contains phrase": When entering several words (= phrase) into the filter, only content
with the same word order will be found

• "contains string": When entering several words into the column filter, content match-
ing an arbitrary combination of the entered words will be found

This allows to use different filtering behaviors when filtering large tables to narrow down the

search results to specific content.

For all filter operators, a dropdown provides a selection of all operators defined for the re-

spective column:

Technical Handbook 5.8

166/488

If the table is used within the Knowledge Builder, a context menu is provided additionally for

selecting or removing effective operators:

Creating new column operators

New column operators can be created as follows:

Precondition: the respective column element needs to have defined its property to be shown.

Note: Since the application of operators depends on the value type of the property to be

filtered for and on the indices, the preset operators are only available if the property of the

column element has been defined. If string operators are needed, a correctly configured

index including index filter is required.

After having specified the property of the column element, select the column itself again.

Click onto the search button: a selection of operator templates will be shown, each

applicable on the value type of the property. Operator templates shown with the appendix

"Create new" indicate that they are not used until now (no instance has been created from

the template).

Select the needed kind of operator.

The "Operator" tab shows the newly created and assigned operator. Each operator listed

here will be available for the column filter. Operators can be reused for other table columns.

Technical Handbook 5.8

167/488

For the default operator, switch to the "Configuration" tab and select one of the operators:

Note: Within the Knowledge Builder, the standard operator will not be shown in the respec-

tive column filter, but it is active when no other operator has been selected in the context

menu.

Operators also can be defined by yourself. For the operator, following properties can be

specified:

Prop-

erty

Description Value

type

Con-

fig-

ura-

tion

name

The configuration name is used for identification and reuse of the configura-

tion element.

String

Icon The icon which will be shown in the filter and its dropdown selection.

Note: Without further plugins, vector images like *.svg cannot be used for

configuration elements within the Knowledge Builder.

Blob

key The operator key for the operator. See table below. String

La-

bel

Text for the tooltip which will be shown at the symbol in case of mouse-over. String

mod-

ifier

Name of the index filter. String

Technical Handbook 5.8

168/488

Operator keys

Operator name Short term Description

containsPhrase Contains phrase

covers contains

distance Distance

equal == Equal

equalBy Corresponds to

equalCardinality Equal cardinality

equalGeo Equal (geo)

equalMaxCardinality Cardinality smaller than or equal to

equalMinCardinality Cardinality greater than or equal to

equalPresentTime now (present)

equalsTopicOneWay filter with

fulltext Contains string

greater > Greater than

greaterOrEqual >= Greater/equal

greaterOverlaps Overlaps from above

greaterPresentTime after now (future)

isCoveredBy is contained in

less < Less than

lessOrEqual <= Less/equal

lessOverlaps Overlaps from below

lessPresentTime before now (past)

notEqual != Not equal

overlaps overlaps

range Between

regexEqual Regular expression

regexFulltext Contains string (regular expression)

Technical Handbook 5.8

169/488

unmodifiedEqual Exactly identical

words Contains string

Modifiers

For using operators like "Contains phrase", the respective operator key like "containsPhrase"

requires a modifier which depends on an index filter.

Index filters are used within an index. The index configuration is done in the global settings

of the Knowledge Builder: Settings > Index configuration.

Within the configuration of the index, the name of the assigned index filter can be specified

and copied for using as modifier:

New index filters are defined within the main settings of the Knowledge Builder:

Settings > Index configuration > Index Filter

Technical Handbook 5.8

170/488

1.3.4.8.3 Column element

A column element is used to assign the content that a table column is supposed to show,

and how that should take place. You can either specify properties, such as attributes and

relations, that are defined by the semantic objects, or you can use structured query modules

or script modules.

Setting options

Name Value

Configuration

Configuration name The configuration name is used for identification and reuse

of the configuration.

Do not show Use this Boolean attribute to control whether the values of

the selected property should be displayed. By default all

properties are displayed.

Do not create This attribute controls whether this property is supposed

to be created when a new object is created if the relevant

input field in the column contains a value. By default new

properties are created.

Do not search Here you can specify that the configured property is not

transferred to the search. This means that this property

is not used to search for the entered search values.

Note: If all column elements in a column are set to "Do not

search", this has the same effect as "Do not show"!

Emphasis Here you can provide formatting specifications for the dis-

play of values; currently, the only available option is under-

line.

Technical Handbook 5.8

171/488

Relation target view Currently only the Drop down alternative is available. If you

select it, the possible values that can be entered for this col-

umn for filtering in this table are compiled from the possi-

ble relation targets as per the schema into a drop-down list,

so that a possible value can be specified quickly. This is rec-

ommended for manageable amounts of potential relation

targets.

Note: This parameter is only available if a Relation type

property was selected.

Content Properties in this group determine the content of the table

cell. Most of the following options are mutually exclusive,

indicated by a *.

Property* Link to the property type that is to be displayed.

Structured query element* A structured query can be used to determine the property.

Script* A script can be used which returns the cell values to be dis-

played (a property, hit, element or primitive value).

Mapping element* .

Show name* Show the name of the row element, independently of which

attribute type is defined as name.

Quality* For the web frontend, this option displays a bar showing

the hit quality incl. percentage value.

Show size Instead of the properties that are determined by any of the

above methods, show only the number of properties.

Use structuring relation Modifies all of the above determination methods such that

they refer to the structuring relation that is defined for this

embedded table instead of the relation target (for structur-

ing relations see the section on general table configuration).

It is possible to define multiple column elements for a column configuration. This makes

sense, for example, if multiple attributes are to be considered in the search, for example the

Name and Synonym attributes, but only one of them is to be displayed.

Example

The Name attribute is configured in the first column element of the Name column configura-

tion.

Technical Handbook 5.8

172/488

The Topic belongs to relation is configured in the column element of the second column.

The transitiveRelationalChainUpwards structured query module is configured in the column

element of the third column.

Technical Handbook 5.8

173/488

Related structured query:

To make it possible to adopt values from the input field of the column, the structured query

must have configured parameters. Multiple parameters can be applied, all of which are as-

signed the same value when the structured query is evaluated.

Note: This is different from other cases in which the structured query is used. Normally the

results are determined by the initial object (in this case “Topic”). In this case, the results are

determined by the objects or properties to which the parameter is attached (in this case the

name attribute).

Unless further changes are made, the value displayed in the column is the value of the at-

tribute used for filtering. If the displayed value does not result from the attribute used for

filtering, there are two options:

• The “renderTarget“ identifier can be attached to relation targets. Objects marked in this
way are displayed in the table as the column value.

“renderTarget” also has the effect that, during output via the JavaScript API, the proper-

ties relating to display are included in the output as a link.

• The identifier “renderProperty“ can be attached to attributes. Properties marked in this
way are displayed in the table column as the column value.

If the search module is not used for filtering, the element to be displayed must be deter-

mined by means of a manually defined parameter or by means of predefined parameters

like renderTarget/renderProperty!

Technical Handbook 5.8

174/488

The structured queries that can be included in the module of the column element can be

selected from a list of structured queries that have already been registered, but it is also

possible to create new structured queries for exactly this module, which includes the alloca-

tion of a registration key. The Do not create property does not affect columns that have been

assigned a structured query module.

A script module is mapped to the fourth column

The aim is to display the persons responsible for the objects to which the topic listed in the

table is linked by means of Topic belongs to. As with the structured query, it is possible to

select the assigned script from a list of registered scripts or to create (and register) a new one

in the dialog. The script editor opens when you click the script module name.

/*
* Returns matching elements for column search value "objectListArgument"
* Note: "elements" may be undefined if no partial query result is available.
* Return undefined if the script cannot provide any partial result itself.
*/
function filter(elements, queryParameters, objectListArgument) {

return elements;
}

// Returns cell values rendered as topics for the given element
// For cell values rendered as Hits, use renderHits() instead
function renderElements(element, queryParameters) {

var result = new Array();
var firstTargets = element.relationTargets(“isTopicOf”) ;
if (firstTargets.length == 0) { return result ;
}
else {

for (var i = 0; i < firstTargets.length; i++) {
var secondTargets = firstTargets[i].relationTargets(“hasResponsiblePerson”);

Technical Handbook 5.8

175/488

for (var j = 0; j < secondTargets.length; j++) {
result.push(secondTargets[j].name());};
};

};
return result.join(’, ’);

}

In this case the language of the script module is JavaScript. Two parts have to be maintained

here: the upper part is used to filter all elements in the table on the basis of the objectLis-

tArgument value entered in the column, while the second part specifies how the value to be

output for an element is calculated. This first part has not been described as yet. A code

pattern is added to both parts during creation, and it can be built upon during creation.

If KScript was selected as the language in the script module for controlling the output of a

column, the selected (registered) script must provide a return value for the column for every

object that forms a row.

As KScript is in principle designed for only one output, the following convention has been

reached for filtering:

If the selected script contains a function named objectListScriptResults and a declared param-

eter, this function is called with the argument of the corresponding search input in order to

return the set of matching objects. The function is called as the initial object on the root term

or the former hit list - depending on the best way to resolve the search. To make this version

truly efficient, it is recommended to evaluate the search inputs accordingly and use the result

to call a registered structured query in order to forward its result to the object list.

1.3.4.9 Query

The user can use the view configuration element “Query” to configure query options for the

Knowledge Graph. The query can either be a predefined query with parameters, or be a

search field input screen for the user.

The “Query” can be selected as a sub-configuration of an alternative or a layout. Any type

of query is obligatory here, the results of which are displayed. Searches for user inputs can

also be configured; instead of the configuration element “Query” (object configuration), the

configuration element “Search field element” is used for the view configuration. Examples of

the panel configuration for the web front-end can be found in chapter 3 “ViewConfiguration

Mapper”.

When a search is to be configured for the web frontend containing facets, then the functional

chain should be observed in the case of panel influencing: Query or Search field element –>
Facet –> Search result.

Setting options

Name Value

Configuration name The configuration name is used for identification and

reuse of the configuration.

Label A label is only used if this configuration is embedded in

another configuration, e.g. Alternative.

Technical Handbook 5.8

176/488

Script for label The label can, alternatively, be determined using a script.

Bookmark identifier The bookmark identifier is used to represent a query pa-

rameter in forms of an expression within the web frontend

URL. It can be used for query views and table column fil-

ters and synchronizes parameter value and URL in both

directions.

Table A table configuration is specified here which is used to

display the search results.

Script for table configuration The table can also be determined using a script.

Query A search can be selected here that is executed as soon as

the configuration element is displayed. The semantic ob-

ject, for which the view configuration is displayed, can be

used as an accessed element in the query.

Script for visibility A script can be used to control whether the configuration

element should be displayed.

Setting options for a query

The following parameters are maintained as meta properties for a query.

Name Value

Parameter name Specifies a parameter name that is to be used in the query.

Setting options for a parameter name

The following parameters are maintained as meta properties for a parameter name:

Name Value

Script for value determina-

tion

The script with the function parameterValue is used for

determining the search value for the specified parameter

name.

Script for parsed value

Technical Handbook 5.8

177/488

Value determination Specifies the value determination path.

• Script: The value is determined from the script and
must not be overwritten by the user.

• Script, overwritable by user input: The script de-
termines the value. The user may overwrite it.

• User input: No script evaluation. User input only.

Value disposition .

Type xsd-type

Label During output to JSON, this value ends up in label.

Bookmark identifier .

Tooltip .

Query for proposed values .

Script for proposed values .

Sort Order .

Display in an application

Query results are output in a table by default.

In this example, query results are output in the web frontend as a table view “mediaList” render

mode style. The “mediaList” render mode converts the typical table view into a sizable list with

an icon and link to the objects. Additional properties of the object can be specified by means of

further column elements (in this case, the email address as an attribute and the profession as a

Technical Handbook 5.8

178/488

relation target of persons).

Instead of using the individual configuration element "Query" for theWeb-Frontend, searches

can be split into the separate configurations "Query" and "Search result view".

Display in Knowledge Builder

The results of any query are always shown in an object list in the Knowledge Builder.

Example:

The “Details” and “Knowledge and Skills” tabs are defined in the view configuration. “Profession”

is a configuration element of the type “Search”. An existing query can be selected or a new one be

created directly, under “Query”.

Definition of the search

Technical Handbook 5.8

179/488

The result of the query is displayed in the “Knowledge and Skills” tab in the Knowledge Builder for

objects of the type “Person”.

1.3.4.10 Graph

The contents of the Knowledge Graph are plotted in a graph with their objects and connec-

tions (see chapter Knowledge Builder > Basics > Graph editor).

Setting options

Name Value

Configuration name The configuration name is used for identification and

reuse of the configuration.

Label A label is only output if this configuration is embedded in

another configuration, e.g. Alternative.

Script for label A script that returns the label.

Graph configuration A graph configuration object is defined here.

Height/width This defines the width and height of the configuration ele-

ment, either as a percentage or exact to the pixel.

Hide legend This defines whether the legend for the node types is to

be displayed.

Initial topics query Query which determines the semantic elements which are

displayed initially when the graph is displayed.

Initial topics script Script which determines the semantic elements which are

displayed initially when the graph is displayed.

Technical Handbook 5.8

180/488

Script for visibility The visibility of the configuration element can be defined

in a script referenced here.

1.3.4.10.1 Graph configuration

The graph configuration only allows specific types and relations to be displayed in the

graph. This prevents unwanted types and relations from appearing in the graph. The graph

configuration can also be queried using JavaScript functions. It is, for example, used in the

Net-Navigator.

Node category elements are subordinate to a graph configuration.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse

of the configuration.

Label A label is only used if this configuration is embedded in an-

other configuration, e.g. an additional alternative.

Maximum node distance Integer value which determines the maximum displayable

amount of nodes across their links; thus determining the

longest possible graph path distance.

Maximum node age Integer value for maximum amount of steps after which the

first nodes are faded out when links are expanded.

1.3.4.10.2 Node category

Node categories are subordinated to graph configurations.

They are assigned subordinate link elements.

Setting options

Name Value

Configuration

Configuration name The configuration name is used for identification and reuse

of the configuration.

Label Label which is used for the legend of the nodes in the web

frontend. This option has no effect within the Knowledge

Builder.

Technical Handbook 5.8

181/488

Script for label Script that returns an element name or a string for the label

instead of using the label attribute.

Adapt to specific type When this option is enabled, only the subtypes will be dis-

played as legend instead of the overall supertype.

Hide abstract types This option prevents abstract types from being displayed in

the legend.

Show in legend This option is for the net navigator in the web frontend only:

• If needed: The legend for the node at top of the graph
is only shown when the node is existent within the

graph.

• Always: The legend is shown disregarding the nodes
being shown in the graph.

• Never: The legend is never shown, even if the respec-
tive node is shown in the graph.

Icon Icon which is displayed for the node category in the graph

exclusively. When no icon is specified, the (inehrited) icon

of the respectve semantic element of the Knowledge Graph

is shown. When no icon is specified at all, types are shown

in forms of colored rings and objects are shown in forms of

colored and filled circles.

Script for icon Script which returns the icon for a node category instead

using the icon attribute. Return value is a blob attribute or

a value of the type $k.Blob.

Expand extensions initially When this option is enabled, extensions are expanded initi-

tally when the core object is displayed in the graph.

Color Color assigned to the nodes of this category. This affects

the coloring of the node circles and of the legend.

Script for color Script which returns the color assigned to the nodes of this

category instead of using the color attribute. Return value

is a hexadexcimal color value.

Category

Menus .

Nodes

Technical Handbook 5.8

182/488

Menus When displaying the graph in the web frontend (net naviga-

tor), actions can be added for nodes as follows:

• Node satellitemenu buttons for expanding, hiding and
pinning the node.

• Action being executed when clicking onto the node it-
self.

For further information, see the respective chapter View

Configuration Mapper > Viewconfig elements > Graph config-
uration.

Context

Apply to Determines for which instances or types the node category

is applied. One node category can be assigned to several

different instances or several different types.

1.3.4.10.3 Link

Links are subordinate to a node category. They represent the edges of the graph, thus the

relations of the Knowledge Graph.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse

of the configuration.

Label The label attribute is not effective for links. Use the script

for label instead.

Script for label Returns an element name or a string for labeling the link.

Color Determines the color of the link.

Query for link Query which determines the target element of the link,

based on the origin which is the superordinate node ele-

ment.

Relation for link Relation which is used for the link. The definition range of

the used relation type needs to comprise the type od the

related node element.

Script for link A script referenced here can be used to define the link. Re-

turn value is a relation at the semantic element of the node.

Initially expanded If this option is enabled, the link will be expanded automat-

ically as soon as the node element is initially displayed.

Preferentially expanded If a node element has several links which are set to expand

initially, this option can be enabled for prioritizing one of

the links.

Technical Handbook 5.8

183/488

1.3.4.11 Text

This configuration element outputs a simple text. This is either configured fixed or deter-

mined via a script.

Setting options

Name Value

Configuration name The configuration name is used for identification and

reuse of the configuration.

Label A label is only output if this configuration is embedded in

another configuration, e.g. Alternative.

Script for label A script that returns the label instead of using the label

attribute.

Text Text that is to be output.

Script for text A script that returns the text to be displayed.

Script for visibility A script that returns a Boolean value for whether the view

is to be displayed or not.

1.3.4.12 Image

Static graphics can be integrated with the aid of this configuration element.

Name Value

Configuration name The configuration name is used for identification and

reuse of the configuration.

Label A label is only output if this configuration is embedded in

another configuration, e.g. Alternative.

Script for label Alternatively, this can be used to determine the label using

a script.

Image The image file that is to be output.

Script for image Alternatively, the graphics can be returned using a script.

Not applicable within the Knowledge Builder.

Height/width Scales the image file to the dimensions specified.

Script for visibility A script is used to determine whether the graphics are to

be displayed.

Technical Handbook 5.8

184/488

1.3.4.13 Script generated view/HTML

Script-generated view

A view created using a script saved in the Knowledge Graph. This is written in JavaScript and

can use a custom template (a Ractive.js “partial”). This allows complex views to be created,

which extend beyond the functionalities of the standard view configuration.

Setting options

Name Value

Configuration name The configuration name is used for identification and

reuse of the configuration.

Label A label is only used if this configuration is embedded in

another configuration, e.g. Alternative.

Script for label Script for determining the label.

Script Script for generating the view.

viewType Name of the partial.

Script for visibility Script for determining the visibility. Return value is a

Boolean value.

Script-generated HTML

This view configuration shows an HTML fragment that is generated using a script stored in

the Knowledge Graph. In it, the JavaScript API of i-views is used to access semantic elements

and their properties and an XML writer object generates an HTML structure and fills it with

data.

Setting options

Name Value

Configuration name The configuration name is used for identification and

reuse of the configuration.

Label A label is only used if this configuration is embedded in

another configuration, e.g. Alternative.

Script for label Script for determining the label.

Script Script for generating HTML output.

Script for visibility Script for determining the visibility.

Example of a script that generates simple HTML output:

function render(element, document) {
var writer = document.xmlWriter();

Technical Handbook 5.8

185/488

writer.startElement("div");
writer.startElement("h2");
writer.cdata(element.name());

writer.endElement();
writer.endElement();

}

Output:

<div>
<h2>Hermann</h2>

</div>

1.3.4.14 Label

The label configuration allows, for example, the labeling of a website or the labeling of a dia-

log panel. The label configurations are managed in the category “Subordinate configuration”

in the Knowledge Builder.

For example, labels are used in the window title panel; this requires creation of a new object

underneath “Label configuration:”

The entries can then be made under “Label” and “Image”:

Note: The view configuration element (“Label”) is titled “Label - Object” by default in the

Knowledge Builder. If a string is entered under “Label”, then this appears as the element

Technical Handbook 5.8

186/488

name of the view configuration element. When a configuration name (“Label”) is assigned,

this appears as the element name.

If the label view is applied to the main window panel of the ViewConfiguration Mapper, the

label content will be displayed in forms of the <title> element in the <head> section:

A comparison shows the different states of the website without a label (title = website path)

or with a label (title = label):

1.3.5 Knowledge Builder configuration

The view configurations described here exclusively relate to Knowledge Builder. Additional

view configurations that affect Knowledge Builder are also described at other points in chap-

ter 7 but can then also relate to the output in JSON.

1.3.5.1 Folder structure

The left part of the main window in Knowledge Builder is used for navigating through the

Knowledge Graph. To do so, a hierarchical folder structure is displayed there. This can be

split into several main areas that are then displayed as bars. If you click on such a bar, the

folder structure underneath it is expanded. This then enables you to access the contents

(elements, queries, import/export mappings etc.). The contents are listed on the right side

where they can be edited.

1.3.5.1.1 Default folder structure

The configuration of the standard folder structure provides folders, making it possible to

navigate the Knowledge Graph and store contents there. Three main areas are available to

administrators.

The upper main area is “FOLDER” and provides folders for creating further folders and for

managing content. These are the working folder, the private folder, the “Most recently used

Technical Handbook 5.8

187/488

objects” folder and the “Query result” folder.

The second main area “KNOWLEDGE GRAPH”makes it possible to navigate to the elements

via the hierarchy of the types. The elements to be reached here are types, objects, attributes

and relations. The area contains three folders:

• Object types for the hierarchy of object types and their concrete objects
• Relation types for the hierarchy of the relations
• Attribute types for the hierarchy of the attributes

The third main area is “TECHNICAL”; it enables administrators to make changes, settings and

configurations of all kinds in the Knowledge Graph. These include, among others, registered

objects, the rights system and triggers.

The configuration of this standard folder structure can be viewed, modified and adapted to

the users needs in the Technical area >> View configuration.

Note: Administrators always see the standard folder structure. If you configure a view con-

figuration for folders, these are displayed only to non-administrators. If an administrator

wishes to see the configured view of the folder structure, this can be set in the personal set-

tings for the Knowledge Builder: Under “Settings” > “Personal” > “View configuration”, select
the “Configured” option.

1.3.5.1.2 Configuration of the folder structure

The folder structure is configured in the technical area under View configuration >> Object
types >> Knowledge Builder configuration >> Folder structure. The admin is granted quick
access to the configurations by selecting the View configuration node in the technical branch,

and then selecting the Organizer object in the Folder structure tab in the pane to the right.

Folder structure elements are linked to each other as a hierarchy in the configuration. The

root node of this hierarchy is an object of the folder structure type. It initially contains a folder

structure called Organizer. All sub-nodes and their sub-nodes are of the folder structure ele-

ments type. The hierarchy in the configuration shows the hierarchy shown in the main win-

dow directly. The direct sub-nodes of the root node are shown as bars in the main window,

Technical Handbook 5.8

188/488

resulting in a visual distinction between the various folder hierarchies.

Label is a parameter that all configuration types have in common. A node that is described

by a configuration is labeled with this value. The content displayed in the right part of the

main window when a node is selected depends on the parameters of the folder structure

element. To do so, a type must be assigned to the parameter Folder type, for which a range

of types is available. These folder types and their additional parameters are listed in the

following table.

Folder type (obligatory) Parame-

ter

Description

Attribute types Type The attribute type specified, and all it sub-

types, are displayed in a hierarchy-based

tree.

Private folder - Display of the folder that only the actual

user may view, and which is different to

each user.

Relation types Type The attribute type specified, and all it sub-

types, are displayed in a hierarchy-based

tree.

Organizing folder Organizing

folder

Any organizing folder can be added here.

Query result folder - Each user has a query result folder of their

own in which the user s most recent query

results are saved.

Type-based folder structure “Without

inheri-

tance”

view, type

The specified type and its subtypes are

listed in a table. If the parameter “Without

inheritance” view is set, then only the speci-

fied type is displayed.

Note: In order to manage which table con-

figurations are used on the right-hand side,

the apply in relation found there must be

linked to this folder structure element.

Virtual folder - A folder that is used for structuring the fold-

ers.

Last objects used - Each user has a folder of their own in which

the last objects used are saved for quicker

access.

Only the configuration type Virtual folder can contain additional sub-configurations, and it is

the only one for which sub-configurations make sense.

Note: In the case of the folder type “Attribute types,” “Relation types” and “Type-based folder

structure,” the parameter “Type” is used for specifying the attribute type, relation type or

object type, and its subtypes, should be displayed in the folder.

Technical Handbook 5.8

189/488

1.3.5.2 Relation target search

The configuration of relation targets makes it possible to influence the strategy used to

search for possible relation targets.

If a Knowledge Graph does not include a search for relation targets, entering “Egon” always

results in a search for objects named “Egon” (i.e. the respective defined name attribute is

used). This response can be modified by specifying a previously defined query. Ordinary

queries rather than structured queries are usually used for this purpose.

For example, to search for persons, you could define a query that searches both the first

name and the last name. If you then search for a target of a relation whose target domain

is person, the first names and last names of persons are searched for the entry “Egon.” A

modified search for relation targets also makes sense if you want to search for objects and

object synonyms at the same time, so that e.g. the “Architecture” object is also found if a user

enters “the art of construction.”

Relation target search configured to search for persons

As with all configurations, the context must be specified in which the relation target search is

to be used. To do this, the relation to which the relation target search is to be applied must

be entered for “apply to relation.”

Technical Handbook 5.8

190/488

The properties “apply to target” and “apply in” can be used as well in any combination as

required.

1.3.5.3 Home view

You can use the configuration Start view (KB) (available as a tab in the view configuration area)

to define which background image and which actions are supposed to be displayed on the

start screen in Knowledge Builder on the right side. The display can be highlighted by means

of de-selection (clicking on the selecting in the left navigation tree).

Setting options

Name Value

Background An image

Color value for font of an ac-

tion

Depending on the image selected, a different color must be

selected for labeling the actions in order to make the text

readable.

In addition to this, actions can be defined. Refer to the Action chapter. An action type can

also be specified. The following entries are available in this case:

Action type Action

Manual (specialized web link) Web manual is opened in the browser

Home page (specialized web

link)

The home page is opened in the browser.

Support email (specialized

web link)

A window opens for a new email to the email address of

the Support department.

Web link Freely definable web link

Technical Handbook 5.8

191/488

<no action type> Execute configured action (using a script)

A web link must be configured completely; otherwise it will not be displayed.

However, this is not necessary for the three action types (specialized web links) displayed

above. They use default values if a property is missing. It is possible to override the default

values.

Possible configuration for a web link

Name Value

Label Display name after the icon

Symbol Icon that is displayed in front of the label

URL URL that is to be opened

1.3.5.4 Search field

The quick search field can be found in the upper left corner of the main window. This field

provides quick access to queries. These are provided by the administrator or can also be

added by the user. All queries that are used here may only expect a search string or no

search input.

No search input makes sense for queries like this, the result of which changes from time

to time. Executing a search like this in the quick search field then shows the current result

without the need to look up the corresponding query in a folder, for example, every time.

For example, there could also be a search query that displays all songs that the active user

has already listened to.

1.3.5.4.1 Search field configuration for administrators

The “Search field” configuration defines which queries are made available by the administra-

tor in the quick search field of the Knowledge Builder.

Newly created Knowledge Graphs feature a search field configuration that is the same for all

users. The administrator can expand this search field configuration to make other queries

accessible to all users. Moreover, each user can add further queries to their quick search

field, which are then only visible to this particular user.

A search field configuration is comprised of “Quick search elements” that must contain a

reference to a query and can optionally be given a label. The order of the quick search

elements is determined by the order of the menu entries at the quick search field.

1.3.5.4.2 Search field configuration for users

The user can add queries by dragging an existing query to the quick search field.

Adding can also take place via the Settings. The Search field item is available on the Personal

tab. On the right, in the User-defined section, the Add and Remove operations are available as

Technical Handbook 5.8

192/488

well as an option for changing the order.

1.3.6 Style

The view configuration is responsible for the structural formatting of elements of the Knowl-

edge Graph for the display. If purely visual properties or information without context is also

be specified, a “Style” element is used.

There are a number of Style elements that are already defined in i-views. The following sec-

tion explains what these elements are and how these style elements are created in Knowl-

edge Builder so that they can then be linked to individual elements of the view configuration

of an application or Knowledge Builder.

In the view configuration, you first have to select the element with which one or more style

elements are to be linked. Almost every view configuration type has a “Styles” tab. There, you

can either define a new style element or link an existing style element . If a new style

element is defined, this must first be given a configuration name. You can then configure it

on the right side of the editor.

A style element can be filled with any number of style properties. The style properties are

always distributed across several tabs, which are described in the sections below.

Note:Not all properties of a style make sense for all configurations. The tables of the follow-

ing sections therefore contain a column called “Configuration type” which shows which view

configuration type is supported by the respective property. The effect is described in the last

column.

1.3.6.1 Style properties in applications and in the Knowledge Builder

This chapter describes the “Configuration” tab of a style element, which contains the style

properties used in both the Knowledge Builder and the view configuration mapper.

Technical Handbook 5.8

193/488

Style property Configuration

type

Effect

Configuration

name

All The configuration name is used for identification and

reuse of the configuration.

Script for acti-

vation

All The style can be activated in dependence on the ac-

tive element by means of a script.

Tree view - Due to the deprecation of groups, this option is no longer

available.

Vertical align-

ment

- Due to the deprecation of groups, this option is no longer

available. Use layouts with vertical orientation instead.

1.3.6.2 Style properties in applications

The “ViewConfiguration Mapper” tab is only displayed when the component “ViewConfigu-

ration Mapper” has been installed. The style properties available for this component are

included in the chapter Style of the ViewConfiguration Mapper (chapter 3).

1.3.6.3 Style properties in the Knowledge Builder

This chapter describes the “KB” tab of a style element, which contains the style properties

used only in the Knowledge Builder.

Technical Handbook 5.8

194/488

Style property Configuration

type

Effect

Configuration

name

All The configuration name is used for identification and

reuse of the configuration.

Show banner Object configu-

ration

Display banner, incuding object name and type

name as well as a buttons for the context menu

for editing. When created a new configuration, the

default value is false.

Height Property Height in lines for string attributes (not: "Text" view).

Show scrollbar Object configu-

ration

If enabled, a scrollbar is shown if the respective view

is too large for being displayed in full size within the

given display area. This option is useful for grouping

view elements containing more than one configura-

tion, such as "Properties" or "Layouts".

Property

Editor width

(pixel)

Property Width in pixels of a property

Technical Handbook 5.8

195/488

Show meta

properties in

context menu

(Meta-) prop-

erty (proper-

ties)

Meta properties are shown in the context menu of

the property. You can thus show either individual

meta properties or all meta properties in a meta

properties configuration.

Note: the Add meta properties menu option remains

unchanged.

Table

Show preview Table Controls whether an editor is shown underneath the

table.

1.3.7 Detector system for determining the view configuration

View configurations can be linked to conditions using the detector system. The detector

system determines when which configuration should be displayed. The way the detector

system functions and the interplay with view configurations are explained in the following

using an example.

Several displays can be created for objects of an object type using the settings in the view

configuration. They can be linked to conditions using the detector system - for example, to a

specific user. For the example described here, two views were configured for the objects of

any type using the view configuration.

Users who are administrators of the professions list which they wish to access should see the

“Detail view for admins”. All users who are not administrators of the professions list which

they wish to access should see the “Detail view”. The conditions that determine how the

views are used are defined in the detector system.

Creation of a view configuration determination

Technical Handbook 5.8

196/488

The detector system is located in the folder hierarchy on the left in the “TECHNICAL” section,

and has been designated as “View configuration detection” under “View configuration”.

By creating a new query filter (see the “Query filter” chapter) in the first step, the starting

point must be defined. This means that you have to define to what other things the following

settings are supposed to apply. In this example, our starting point is therefore a view config-

uration (in this case: “Detail view for admins”), for which a condition is created at the same

time. “View configuration” must be selected from the list and be entered as the operation

parameter. The query filter then looks as follows:

A new query filter must now be created under the query filter that is searching for the view

configuration “Detail view for admins” and which describes the condition for this view config-

uration: the view configuration “Detail view for admins” should only be visible to users who

have the profession that they are currently viewing. The second query filter therefore checks

whether the active user is a person of the same profession. By clicking on , the set of

Technical Handbook 5.8

197/488

search results is then permitted to view the configuration “Detail view for admins”. The fol-

lowing diagram shows the query filter for users who are persons of the same profession that

they are currently viewing and the folder hierarchy that was created so far on the left-hand

side.

The view configuration “Detail view” is automatically used for those users who are not person

of the same profession that they are currently viewing.

Weighting of the configurations in the detector system

The configurations in the detector system “View configuration detection” are weighted from

top to bottom in the application. This means that access settings made closer to the top

have a higher weighting that those further down. In order to bypass this default setting, the

authorizations or denials can be given priorities.

Priority 1 is the highest priority. If the condition instructions overlap, then the authoriza-

tion or denial conditions with the highest priority is implemented. If no specifications have

been made for priorities, or if all priority numbers have the same value, then the previous

conditions are implemented in the detector tree.

1.4 JavaScript API

1.4.1 Introduction

The JavaScript-API is a server-side API for accessing a semantic Knowledge Graph. The API is

used in triggers, REST services, reports etc.

By means of the API, we can access the Knowledge Graph read-only (processing queries,

querying properties etc.) and we also can make modifications to the Knowledge Graph (cre-

ating objects, changing attributes etc.).

The Knowledge Builder provides an integrated editor for editing, executing and debugging

JavaScript code. The editor is available when accessing the respective code snippet. Regis-

tered JavaScript code can be accessed via TECHNICAL > Registered objects > Scripts. New
JavaScript can be created where needed (REST inteface configuration, View configuration) or

in the working/private folder of the Knowledge Builder.

Note about script references: When commenting out references to queries or other ele-

Technical Handbook 5.8

198/488

ments of the Knowledge Graph, the reference of the previously referenced element to the

JavaScript will not be listed anymore when invoking the "References" list for the element.

1.4.1.1 API Reference

The API reference is available here:

https://documentation.i-views.com/5.8/javascript-api/index.html

1.4.1.2 The namespace $k

Most objects are defined in the namespace $k. The namespace object itself has a few useful

functions, e.g.

$k.rootType())

which returns the root type of the Knowledge Graph, or

$k.user())

which returns the current user.

1.4.1.3 Registry

Another important object is the Registry object $k.Registry. It allows to access objects by their

registered key (folder elements) / internal name (types).

Examples:

$k.Registry.type("Article")

returns the type with the internal name "Article".

$k.Registry.query("rest.articles")

returns the query with the registered key "rest.articles".

The Registry object is a singleton, similar to JavaScript’s Math object.

1.4.1.4 Working with semantic elements

Semantic elements are usually retrieved from the registry or by a query.

// Get the person type by its internal name
var personType = $k.Registry.type("Person");

// Perform the query named "articles",
// with the query parameter "tag" set to "Sailing"
var sailingArticles = $k.Registry.query("articles").findElements({tag: "Sailing"});

The properties of an element can be accessed by specifying the internal name of the property

type.

Technical Handbook 5.8

199/488

// Get the value of the attribute "familyName"
var familyName = person.attributeValue("familyName");
// Get the target of the relation "bornIn"
var birthplace = person.relationTarget("bornIn");

A shortcut to access the value of the name attribute is the function name()

var name = birthplace.name();

If an attribute is translated, the desired language can be specified, either as 2-letter or 3-letter

ISO 639 language code. The current language of the environment is used if no language is

specified.

var englishTitle = book.attributeValue("title", "en");
var swedishTitle = book.attributeValue("title", "swe");
var currentTitle = book.attributeValue("title");

1.4.1.5 Transactions

Transactions are required to create, modify or delete elements. If transactions are controlled

by the script, a block can be wrapped in a transaction:

$k.transaction(function() {
return $k.Registry.type("Article").createInstance();

});

It is possible to configure if the script controls transactions or if the entire script should be

run in a transaction. The only exception are trigger scripts, which are always run as part of a

writing transaction.

A transaction may be rejected due to concurrency conflicts. An optional function can be

passed to $k.transaction() that is evaluated in such cases:

$k.transaction(
function() { return $k.Registry.type("Article").createInstance() },
function() { throw "The transaction was rejected" }

);

Transactions, like the ones described above, may not be nested. There are, however, cases

in which nesting is unavoidable; for example, because a script function is called both by

functions that are already encapsulated in a transaction and functions for which this does

not apply. A so-called “Optimistic transaction” can be used in this case. This construction

uses the external transaction - if there is one, or it starts a new transaction.

$k.optimisticTransaction(function() {
return $k.Registry.type("Article").createInstance();

});

Technical Handbook 5.8

200/488

Constructions like this should be avoided, because a transaction represents a practical oper-

ational unit which is executed in whole or not at all. Either what is embedded makes sense

and is complete in itself, or is not.

Please note: A troubleshooting function in the event of failure of the optimistic transaction is

not available. If an external transaction exists, its troubleshooting function is executed in the

event of failure.

1.4.1.6 Modify elements

1.4.1.6.1 Create elements

// Create a new instance
var person = $k.Registry.type("Person").createInstance();

// Create a new type
var blogType = $k.Registry.type("CommunicationChannel").createSubtype();
blogType.setName("Blog");

1.4.1.6.2 Add and change attributes

Attribute values can be set with setAttributeValue(), which implies that a single attribute is

either already present or created. Existing attribute values are overwritten. An exception is

thrown when more than one attribute of a type is present.

person.setAttributeValue("familyName", "Sinatra");
person.setAttributeValue("firstName", "Frank");
// Overwrite the value "Frank" with "Francis""
person.setAttributeValue("firstName", "Francis");

createAttribute() allows to create more than one attribute of a type.

// Create two attributes
person.createAttribute("nickName", "Ol’ Blue Eyes");
person.createAttribute("nickName", "The Voice");

1.4.1.6.3 Add relations

A relation between two elements can be created with createRelation():

var places = $k.Registry.query("places").findElements({name: "Hoboken"});
if (places.length == 1)

person.createRelation("bornIn", places[0]);

Technical Handbook 5.8

201/488

1.4.1.6.4 Delete elements

Any element can be deleted with the remove() function:

person.remove();

This also deletes all properties of the element.

1.4.2 Examples

1.4.2.1 Queries

Search for elements:

// Perform the query "articles" with parameter tag = "Soccer"
var topics = $k.Registry.query("articles").findElements({tag: "Soccer"});
for (var t in topics)

$k.out.print(topics[t].name() + "\n");

Return hits. A hit wraps an element and adds a quality value (between 0 and 1) and additional

metadata.

// Perform the query "mainSearch" with the search string "Baseball"
var hits = $k.Registry.query("mainSearch").findHits("Baseball");
hits.forEach(function(hit) {

$k.out.print(hit.element().name() + " (" + (Math.round(hit.quality() * 100))+ "%)\n");
});

Convert query results to JSON:

var topics = $k.Registry.query("articles").findElements({tag: "Snooker"});
var jsonTopics = topics.map(function(topic) {

return {
name: topic.name(),
id: topic.idNumber(),
type: topic.type().name()

}
});
$k.out.print(JSON.stringify(jsonTopics, undefined, "\t"));

1.4.2.2 Runtime generated queries

The JavaScript API also makes it possible to generate queries dynamically. Here are several

examples from a film Knowledge Graph:

Search for films by year + name

var query = new $k.StructuredQuery("imdb_film");
query.addAttributeValue("imdb_film_year", "year");

Technical Handbook 5.8

202/488

query.addAttributeValue("name", "name");
query.findElements({year: "1958", name: "Vert*"});

The domain is transferred to the constructor. In case of internal names, the search automat-

ically looks for objects of this type. The setDomains() function offers more options

Year + number of directors >= 3

var query = new $k.StructuredQuery("imdb_film");
query.addAttributeValue("imdb_film_year", "year");
query.addCardinality(“imdb_film_director", 3, ">=");
query.findElements({year: "1958"});

Year + name of director

var query = new $k.StructuredQuery("imdb_film");
query.addAttributeValue("imdb_film_year", "year", ">=");
var directorQuery = query.addRelationTarget(“imdb_film_director").targetQuery();
directorQuery.addAttributeValue("name", "director");
query.findElements({year: "1950", director: "Hitchcock, Alfred"});

Alternatives (Or conditions)

var query = new $k.StructuredQuery("imdb_film");
query.addAttributeValue("imdb_film_year", "year");
var alternatives = query.addAlternativeGroup();
alternatives.addAlternative().addAttributeValue("name", "name");
alternatives.addAlternative().addAttributeValue("imdb_film_alternativeTitel", "name");
query.findElements({year: "1958", name: "Vert*"});

Possible operators:

Operator name Short term Description

containsPhrase Contains phrase

covers contains

distance Distance

equal == Equal

equalBy Corresponds to

equalCardinality Equal cardinality

equalGeo Equal (geo)

equalMaxCardinality Cardinality smaller than or equal to

equalMinCardinality Cardinality greater than or equal to

Technical Handbook 5.8

203/488

equalPresentTime now (present)

equalsTopicOneWay filter with

fulltext Contains string

greater > Greater than

greaterOrEqual >= Greater/equal

greaterOverlaps Overlaps from above

greaterPresentTime after now (future)

isCoveredBy is contained in

less < Less than

lessOrEqual <= Less/equal

lessOverlaps Overlaps from below

lessPresentTime before now (past)

notEqual != Not equal

overlaps overlaps

range Between

regexEqual Regular expression

regexFulltext Contains string (regular expression)

unmodifiedEqual Exactly identical

words Contains string

1.4.2.3 Create and change elements

Create a person

// Get the person type by its internal name
var personType = $k.Registry.type("Person");
// Create a new instance
var person = personType.createInstance();
// Set attribute values
person.setAttributeValue("familyName", "Norris");
person.setAttributeValue("firstName", "Chuck");

Set the full name of a person

var familyName = person.attributeValue("familyName");

Technical Handbook 5.8

204/488

var firstName = person.attributeValue("firstName");
if (familyName && firstName)
{

var fullName = familyName + ", " + firstName;
person.setAttributeValue("fullName", fullName);

}

Set the value of an attribute

// Boolean attribute
topic.setAttributeValue("hasKeycard", true);

// Choice attribute
// - internal name
topic.setAttributeValue("status", "confirmed");
// - choice object
var choiceRange = $k.Registry.attributeType("status").valueRange();
var choice = choiceRange.choiceInternalNamed("confirmed");
topic.setAttributeValue("status", choice);

// Color attribute
topic.setAttributeValue("hairColor", "723F10");

// Date / Time / DateAndTime attribute
topic.setAttributeValue("dateOfBirth", new Date(1984, 5, 4));
topic.setAttributeValue("lastModification", new Date());
topic.setAttributeValue("teatime", new Date(0, 0, 0, 15, 30, 0));

// FlexTime attribute
// - $k.FlexTime (allows imprecise values)
topic.setAttributeValue("start", new $k.FlexTime(1984, 6));
// - Date (missing values are set to default values)
topic.setAttributeValue("start", new Date(1984, 5, 3));

// Number (integer / float) attribute
topic.setAttributeValue("weight", 73);

// Interval
topic.setAttributeValue("interval", new $k.Interval(2, 4));

// String attribute
// - untranslated
topic.setAttributeValue("familyName", "Norris");
// - translated (language is an ISO 639-1 or 639-2b code)
topic.setAttributeValue("welcomeMessage", "Welcome", "en");
topic.setAttributeValue("welcomeMessage", "Bienvenue", "fre");

Create a new attribute

person.createAttribute("nickName", "Ground Chuck");

Create a new relation

Technical Handbook 5.8

205/488

var places = $k.Registry.query("places").findElements({name: "Oklahoma"});
if (places.length == 1)

person.createRelation("bornIn", places[0]);

Delete an element, including its properties

person.remove()

Convert a string to an attribute valu. The ValueRange of an attribute type knows the valid

values of the attribute and can parse a string. It throws an exception if the string is not valid.

var statusRange = $k.Registry.type("status").valueRange();
var statusConfirmed = statusRange.parse("Confirmed", "eng");

Set change metadata

topic.setAttributeValue("lastChangeDate", new Date());
var userInstance = $k.user().instance();
// Ensure that a single relation to the user instance exists
if (topic.relationTarget("lastChangedBy") !== userInstance)
{

var relations = topic.relations("lastChangedBy");
for (var r in relations)

relation[r].isolate();
topic.createRelation("lastChangedBy", userInstance);

}

1.4.2.4 Date and time

Wenn man ein JavaScript-Date als Attributwert setzt, wird der Wert in der lokalen Zeitzone

gespeichert. Die Attribute selbst speichern keine Zeitzone, nur Datum/Uhrzeit.

var task = $k.Registry.type(’Task’).createInstance()
task.setAttributeValue(’dateOfCreation’, new Date())

Wennman dieses Script zum Zeitpunkt 20.6.2023 12:58 MEZ ausführt, wird "20.6.2023 12:58"

als Attributwert gesetzt.

Um einen Attributwert unabhängig von der lokalen Zeitzone zu speichern, kann man die

$k.DateTime-API verwenden. Dieses hat eine mit Date verwandte API, kann aber zusätzlich

mit toUTC() die Zeitzone des Werts wandeln:

var task = $k.Registry.type(’Task’).createInstance()
task.setAttributeValue(’dateOfCreation’, new $k.DateTime().toUTC())

Dieses Script setzt zum selben Zeitpunkt "20.6.2023 10:58" als Attributwert.

Da das Attribut keine Zeitzone speichert, ist die Darstellung bei Clients unabhängig von der

lokalen Zeitzone.

Technical Handbook 5.8

206/488

Für eine Darstellung in der lokalen Zeitzone kann $k.DateTime mit toUTCDate() den in UTC

gespeicherten Attributwert in eine Date in der lokalen Zeitzone umwandeln.

task.attributeValue(’dateOfCreation’).toUTCDate()

Vorsicht Fallen:

• toUTC() ist nicht beim ECMAScript-Date definiert, nur bei $k.DateTime und $k.Time
• toUTCDate() ist leider leicht mit toUTC() zu verwechseln.
• toUTCDate() liefert ein ECMAScript-Date, toUTC() ein $k.DateTime / $k.Time-Objekt

Wenn man zu einem Datum/Uhrzeit-Wert nur das Datum oder nur die Uhrzeit ausgeben

möchte, kann man dazu $k.Date und $k.Time verwenden:

// Anlegezeitpunkt in lokaler Uhrzeit darstellen
new $k.Time(task.attributeValue(’dateOfCreation’).toUTCDate())

Vorsicht Falle: Im Gegensatz zur ECMAScript-API ist $k.Date nur das Datum ohne Uhrzeit.

$k.DateTime hat Datum + Uhrzeit.

1.4.2.5 Sessions

Accessed elements of a search result table ("Click action")

ele-

ment

The row element of the table. When the table is the subordinate configuration of a

query view, "element" is the output of the search for the row.

con-

text.tableElementId

The context element of the view in which the table is located. In this case, con-

text.tableElementId equals the input of the search. To get the semantic element

itself, the Id can be queried using the method "elementWithID":

var ctx = context.tableElementId

var elem = $k.Registry.elementWithID(ctx)

this.semanticElement()Delivers the semantic element of the view; in the case of a search result table, it

equals the row element. this.semanticElement() is available from version 5.4 and

on.

Temporary storage of accessed elements or values using session variables

To provide a semantic element or a specific value for a later accessed view, session variables

can be used.

The assignment of the session variable is done by:

Technical Handbook 5.8

207/488

$k.Session.current().setVariable(’nameOfVariable’, elementOrValue)

Reading out the session variable works like this:

$k.Session.current().getVariable(’nameOfVariable’)

1.4.2.6 REST

A REST script must define a respond() function that receives the HTTP request, the parsed

request parameters and an empty HTTP response. The script then fills header fields and the

contents of the response.

function respond(request, parameters, response)
{

response.setText("REST example");
}

Restlet that returns a blob

function respond(request, parameters, response)
{

var name = parameters["name"];
if (name)
{

var images = $k.Registry.query("rest.image").findElements({"name": name});
if (images.length == 1)
{

// Set the contents and content type (if known) from the image blob.
response.setContents(images[0].value());
// Show the image instead of asking to download the file
response.setContentDisposition("inline");

}
else
{

response.setCode($k.HttpResponse.BAD_REQUEST);
response.setText(images.length + " images found");

}
}
else
{

response.setCode($k.HttpResponse.BAD_REQUEST);
response.setText("Name not specified");

}
}

Restlet that creates an instance with an uploaded blob

function respond(request, parameters, response)
{

var formData = request.formData();

Technical Handbook 5.8

208/488

var name = formData.name;
var picture = formData.picture;
if (name && picture)
{

var city = $k.Registry.type("City").createInstance();
city.setAttributeValue("image", picture);
city.setName(name);
response.setText("Created city " + name);

}
else
{

response.setCode($k.HttpResponse.BAD_REQUEST);
response.setText("Parameters missing");

}
}

1.4.2.7 XML

Transforms query results into XML elements

function respond(request, parameters, response)
{

var name = parameters["name"];
if (name)
{

// Find points of interest
var topics = $k.Registry.query("rest.poi").findElements({name: name});
// Write XML
var document = new $k.TextDocument();
var writer = document.xmlWriter();
writer.startElement("result");
for (var t in topics)
{

writer.startElement("poi");
writer.attribute("name", topics[t].name());
writer.endElement();

}
writer.endElement();
response.setContents(document);
response.setContentType("application/xml");

}
else
{

response.setCode($k.HttpResponse.BAD_REQUEST);
response.setContents("Name not specified");

}
}

XML output

<result>
<poi name="Plaza Mayor"/>

Technical Handbook 5.8

209/488

<poi name="Plaza de la Villa"/>
<poi name="Puerta de Europa"/>

</result>

Use qualified names

var document = new $k.TextDocument();
var writer = $k.out.xmlWriter();
writer.setPrefix("k", "http://www.i-views.de/kinfinity");
writer.startElement("root", "k");
writer.attribute("hidden", "true", "k");
writer.startElement("child","k").endElement();
writer.endElement();

XML output

<k:root xmlns:k="http://www.i-views.de/kinfinity" k:hidden="true">
<k:child/>

</k:root>

Define a default namespace

var document = new $k.TextDocument();
var writer = $k.out.xmlWriter();
writer.startElement("root");
writer.defaultNamespace("http://www.i-views.de/kinfinity");
writer.startElement("child").endElement();
writer.endElement();

XML

<root xmlns="http://www.i-views.de/kinfinity">
<child/>

</root>

1.4.2.8 HTTP client

Load a picture via HTTP and store it as a blob

var http = new $k.HttpConnection();
var imageUrl = "http://upload.wikimedia.org/wikipedia/commons/e/e7/2007-07-06_GreatBriain_Portree.jpg";
var imageResponse = http.request(new $k.HttpRequest(imageUrl));
if (imageResponse && imageResponse.code() == $K.HttpResponse.OK)
{

var portree = $k.Registry.type("City").createInstance();
portree.setAttributeValue("image", imageResponse);
portree.setName("Portree");

}

Update the weather report of all cities

Technical Handbook 5.8

210/488

var instances = $k.Registry.type("City").instances();
var http = new $k.HttpConnection();
for (var i in instances)
{

var city = instances[i];
var weatherUrl = "http://api.openweathermap.org/data/2.5/weather";
var weatherRequest = new $k.HttpRequest(weatherUrl);
weatherRequest.setQueryData({q: city.name()});
try {

var weatherResponse = http.request(weatherRequest);
if (weatherResponse.code() == $k.HttpResponse.OK)
{

var json = JSON.parse(weatherResponse.text());
var weather = json.weather[0].description;
city.setAttributeValue("weather", weather);

}
} catch (e) {
}

}

Send JSON object as query data via POST request

var http = new $k.HttpConnection();
var object_to_post = [{foo: ’bar’}, ’baz’];’
var destination_url = ’http://upload-via-post.domain.com’;
var post_request = new $k.HttpRequest(destination_url, ’POST’);
post_request.setText(JSON.stringify(object_to_post))
post_request.setHeaderField(’Content-Type’, ’application/json’);
var response = http.request(post_request);

1.4.2.9 Send e-mails

E-mails can be sent with the MailMessage object. To do so, an SMTP server must be config-

ured in the Knowledge Graph (Settings -> System -> SMTP).

var mail = new $k.MailMessage();
mail.setSubject("Hello from " + $k.volume());
mail.setText("This is a test mail");
mail.setSender("kinfinity@example.org");
mail.setReceiver("developers@example.org");
mail.setUserName("kinf");
mail.send();

The user account “kinf” is used for authentication. The password is saved in the SMTP set-

tings.

1.4.2.10 Data source mappings

Per API kann man registrierte Abbildungen von Datenquellen ausführen. Die Abbildungen

werden durch Objekte der Klasse $k. Mapping repräsentiert. Abbildungen zur Laufzeit zu

Technical Handbook 5.8

211/488

generieren ist derzeit nicht möglich.

Einen Exportmit einer registrierten Abbildungmit demRegistierungsschlüssel "products"durchführen:

var mapping = $k.Registry.mapping("products")
mapping.runExport()

Bei dateibasierten Datenquellen verwendet die API standardmäßig die konfigurierten Ein-

/Ausgabedateien. Alternativ kann von/in eine $k.NetEntity im-/exportiert werden:

var mapping = $k.Registry.mapping("products")
var productsEntity = new $k.NetEntity()
mapping.setParameter("netEntity", productsEntity)
mapping.runExport()

Dadurch können die Inhalte per HTTP oder E-Mail transportiert werden. Derzeit werden die

Inhalte der NetEntity im Hauptspeicher abgelegt, für große Datenmengen ist diese Methode

deshalb nicht geeignet.

1.4.2.11 ZIP files

Zip-Dateien können sowohl gelesen als auch erstellt werden. Sowohl die Zip-Datei selbst als

auch die enthaltenen Dateien werden über $k.NetEntity-Objekte repräsentiert. Es können

aber auch Blobs als Inhalt hinzugefügt werden.

Eine Zip-Datei in einem REST-Request als Antwort liefern:

function respond(request, parameters, response) {
var zip = new $k.Zip(’avatars.zip’)
$k.Registry.type(’account’).allInstances().forEach(function (account) {
zip.addEntry(account.attributeValue(’avatar’))

})
response.setContents(zip)

}

Den Inhalt einer als Body eines POST-Requests geschickten Zip-Datei auslesen:

Dazu wird der Konstruktor mit einer $k.NetEntity aufgerufen.

function respond(request, parameters, response) {
if (request.contentType() !== ’application/zip’) {
response.setCodeBadRequest().setText(’Zip expected’)
return

}
var zip = new $k.Zip(request)
zip.filenames().forEach(function (filename) {
var entityInZip = zip.entry(filename)
var account = $k.Registry.type(’upload’).createInstance()
account.setAttributeValue(’file’, entityInZip)

})
}

Technical Handbook 5.8

212/488

1.4.2.12 Views

JSON structures can also be generated using the view configuration; this is possible for indi-

vidual objects as well as for lists of objects.

In the most straightforward case, an object is converted to JSON using the standard configu-

ration without additional context:

var data = element.renderJSON();

All structures defined by the configuration are then converted to JSON:

{
"viewType" : "fieldSet",
"label" : “Bern",
"elementType" : "instance",
"modNum" : 26,
"elementId" : "ID17361_141538476",
"type" : {

"elementType" : "instance",
"typeId" : "ID10336_319205877",
"internalName" : "City",
"typeName" : “City"

},
"properties" : [{

"values" : [{
"value" : "Bern",
"propertyId" : "ID17361_137824032"

}
],
"schema" : {

"label" : "Name",
"elementType" : "attribute",
"internalName" : "name",
"maxOccurrences" : 1,
"attributeType" : "string",
"viewId" : "ID20838_426818557",
"typeId" : "ID4900_317193164",
"minOccurrences" : 0

}
}, {

"values" : [{
"typeId" : "ID4900_79689320"

}
],
"schema" : {

"label" : “AlternativeName/Synonym",
"elementType" : "attribute",
"internalName" : "alternativeName",
"attributeType" : "string",
"rdf-id" : "alternativeName",
"viewId" : "ID20839_64952366",
"typeId" : "ID4900_79689320",

Technical Handbook 5.8

213/488

"minOccurrences" : 0
}

}, {
"values" : [{

"target" : {
"typeId" : "ID10336_493550611",
"label" : “Museum of Fine Arts Bern",
"elementId" : "ID17362_205182965"

},
"propertyId" : "ID17361_395925739"

}, {
"target" : {

"typeId" : "ID10336_493550611",
"label" : “Swiss National Library",
"elementId" : "ID20401_126870015"

},
"propertyId" : "ID17361_9264966"

}
],
"schema" : {

"targetDomains" : [{
"elementType" : "instance",
"typeId" : "ID10336_493550611",
"internalName" : "point_of_interest",
"typeName" : “Point of interest"

}
],
"label" : “contains point of interest",
"elementType" : "relation",
"internalName" : "contains_poi",
"viewId" : "ID20840_182208894",
"typeId" : "ID2052_332207092",
"minOccurrences" : 0

}
}

]
}

You can also define a context in the form of an application or configuration object. A suitable

configuration for this context is then selected. The application “Android” is specified in the

following example:

var application = $k.Registry.elementAtValue("viewconfig.configurationName", "Android");
var data = element.renderJSON(application);

However, it is also possible to specify a configuration and let this configuration convert the

element. To do so, you generate a $k.ViewConfiguration from the configuration object.

var configurationElement = $k.Registry.elementAtValue("viewconfig.configurationName", “Android Article Configuration”);
var data = $k.ViewConfiguration.from(configurationElement).renderJSON(element);

Technical Handbook 5.8

214/488

Since the JSON structure is rather extensive, you can also leave out certain properties in the

conversion by specifying the keys as additional parameters:

var application = $k.Registry.elementAtValue("viewconfig.configurationName", "Android");
var data = element.renderJSON(application, ["rdf-id", "viewId", "typeId", "propertyId", "modNum", "minOccurrences", "maxOccurrences"]);

{
"viewType": "fieldSet",
"label": "Bern",
"elementType": "instance",
"elementId": "ID17361_141538476",
"type": {

"elementType": "instance",
"internalName": "City",
"typeName" : “City"

},
"properties": [

{
"values": [

{
"value": "Bern"

}
],
"schema": {

"elementType": "attribute",
"label": "Name",
"internalName": "name",
"attributeType": "string",
"maxOccurrences": 1

}
},
{

"schema": {
"elementType": "attribute",
"label": “AlternativeName/Synonym",
"internalName": "alternativeName",
"attributeType": "string"

}
},
{

"values": [
{

"target": {
"label": “Museum of Fine Arts Bern",
"elementId": "ID17362_205182965"

}
},
{

"target": {
"label": “Swiss national library",
"elementId": "ID20401_126870015"

}

Technical Handbook 5.8

215/488

}
],
"schema": {

"elementType": "relation",
"targetDomains": [

{
"elementType": "instance",
"internalName": "point_of_interest",
"typeName" : “Point of interest"

}
],
"label": “contains point of interest",
"internalName": "contains_poi"

}
}

]
}

1.4.2.13 Mustache templates

The following restlet function renders a document using the Mustache template library. It

expects the following schema of a template document:

• a string attribute (internal name "template.id") to identify a template
• a document blob (internal name "template.file") containing the template, e.g. an HTML
document

• a relation to a media type(internal name "template.contentType")

A query ("rest.articles") returns the elements that should be rendered. The Mustache library

is registered as "mustache.js".

function respond(request, parameters, response)
{

// Include Mustache library
$k.module("mustache.js");

// Get template
var templateId = parameters["templateId"];
var templateTopic = $k.Registry.elementAtValue("template.id", templateId);
var templateText = templateTopic.attributeValue("template.file").text("utf-8");

// Find elements
var topics = $k.Registry.query("rest.articles").findElements(parameters);

// Prepare template parameters
var topicsData = topics.map(function(topic) {

return {
name: topic.name(),
id: topic.idNumber(),
type: topic.type().name()

Technical Handbook 5.8

216/488

}
})

var templateParameters = {
topics: topicsData

};

// Render with Mustache
var output = Mustache.render(templateText, templateParameters);

// Return the rendered document
response.setText(output);
response.setContentType(templateTopic.relationTarget("template.contentType").name());

}

1.4.2.14 Java native interface

Java can be accessed via JNI (Java Native Interface).

Caution: JNI is an experimental feature and has several restrictions:

• JNI cannot be used in triggers
• It is not possible to define classes (e.g. for callbacks)
• Generics are not supported
• JNI allows accessing system resources (files etc.), so take care when using JNI in REST
services

• JNI has to be enabled and configured in the configuration file of each application. The
classpath cannot be changed during runtime.

[JNI]
classPath=tika\tika-app-1.5.jar
libraryPath=C:\Program Files\Java\jre7\bin\server\jvm.dll

Basic example

// Import the StringBuilder class, without namespace
$jni.use(["java.lang.StringBuilder"], false);
// Create a new instance
var builder = new StringBuilder();
// Javascript primitives and Strings are automatically converted
builder.append("Welcome to ");
builder.append($k.volume());
// toJS() converts Java objects to Javascript objects
$k.out.print(builder.toString().toJS());

Text/metadata extraction with Apache Tika

$jni.use([
"java.io.ByteArrayInputStream",

Technical Handbook 5.8

217/488

"java.io.BufferedInputStream",
"java.io.StringWriter",
"org.apache.tika.parser.AutoDetectParser",
"org.apache.tika.metadata.Metadata",
"org.apache.tika.parser.ParseContext",
"org.apache.tika.sax.BodyContentHandler"

], false);
// Get a blob
var blob = $k.Registry.elementAtValue("uuid", "f36db9ef-35b1-48c1-9f23-1e10288fddf6").attributeValue("ebook");
// Blobs have to be explicitely converted to Java byte arrays
var bufferedInputStream = new BufferedInputStream(new ByteArrayInputStream($jni.toJava(blob)));
// Parse the blob
try {

var parser = new AutoDetectParser();
var writer = new StringWriter();
var metaData = new Metadata();
parser.parse(bufferedInputStream, new BodyContentHandler(writer), metaData, new ParseContext());
var string = writer.toString().toJS();
// Print extracted metadata
var metaNames = metaData.names().toJS().sort(

function(a,b) { return a.localeCompare(b) });
for (n in metaNames)

$k.out.print(metaNames[n] + " = " + metaData.get(metaNames[n])).cr();
// Print extracted text (first 100 chars)
$k.out.cr().cr().print(string.substring(1, 100) + " [...]\n\n(" + string.length + " chars)");

}
catch (e) {

$k.out.print("Extraction failed: " + e.toString());
} finally {

bufferedInputStream.close();
}

1.4.2.15 Parsing XML

Die experimentelle DOMParser-API bietet eine Teilmenge der Web API-Funktionalität zum

Parsen von XML-Inhalten.

XML als DOM einlesen:

var xml = ’<rootNode><node1>Some text</node1><node2>More text</node2></rootNode>’
var dom = new $dom.DOMParser().parseFromString(xml)
$k.out.print(dom.firstChild.children[0].nodeName)

Knoten per XPath adressieren:

var xml = ’<rootNode><node1>Some text</node1><node2>More text</node2></rootNode>’
var dom = new $dom.DOMParser().parseFromString(xml)
$k.out.print(dom.evaluate(’//node2’).stringValue)

Technical Handbook 5.8

218/488

1.4.3 Modules

1.4.3.1 Define modules

A module is defined with the define() function. The argument is either a module object or a

function that returns an module object. A module should contain only a single definition.

Example: Define a module with a function jsonify())

$k.define({
/*
* Create a JSON object array for the topics
*/
jsonify: function(topics) {

return topics.map(function(topic) {
return {

name: topic.name(),
id: topic.idString(),
type: topic.type().name()

};
});

}
});

define() allows to specify dependencies from other modules. The following script defines a

module that uses another module.

$k.define(["rest.common"], function(common) {
return {

stringify: function(topics) {
return JSON.stringify(common.jsonify(topics), undefined, "\t")

}
}});

1.4.3.2 Use modules

A module can be used either with require() or module().

require() expects an array of module names and a callback function. The arguments of the

callback function are the module ojects. require() returns the return value of the callback

function

var topics = $k.Registry.query("rest.poi").findElements({name: "Madrid"});
var json = $k.require(["rest.common"], function(common) {

return common.jsonify(topics);
});
$k.out.print(JSON.stringify(json, undefined, "\t"));

module() expects the name of a module and returns the module object.

var json = $k.module("rest.common").renderTopics(topics);
$k.out.print(JSON.stringify(json, undefined, "\t"));

Technical Handbook 5.8

219/488

module() can also be used to include scripts that doe not define a module at all. The script is

evaluated and all declared functions are instantiated.

1.4.3.3 AMD

To integrate JavaScript libraries that support the AMD standard, you first have to globally

define require() and define().

this.define = $k.define;
this.define.amd = {};
this.require = $k.require;

If a library defines a module with a certain ID and you want to register this library under a

different name, you can map the module IDs to registry IDs.

$k.mapModule("underscore", "lib.underscore");

You can now register underscore.js as "lib.underscore" and use the "underscore" module

defined there.

1.4.4 Editor/Debugger

The editor itself provides the four tab-separated sections:

Script

Functionalities: Importing, editing and exporting scripts

Im-

port/Export

Allows importing/exporting of *.js files from/to the file system of the PC.

Func-

tions

Lists all used and named function calls within the code. When selecting a function

out of the list, the editor jumps to the line where the function call is located.

Save Saves the changes made to the code (Shortcut: Strg + S).

Dis-

card

Discards all changes since the last time of saving.

Technical Handbook 5.8

220/488

Execute script

Functionalities: Executing script, Displaying output, implementing test script for debugging.

The wrapper script shown in the following image is an example for testing a restlet in the

Knowledge Builder. The test script can be defined in the script editor on the "Execute Script"

tab as "Additional test script".

Breakpoints can be set on the tab "Debug".

Ex-

e-

cute

script

Execute the script in one cycle, without interruptance.

Trans-

ac-

tion

Writing actions (e. g. creating or deleting objects) from within the script require a

transaction. When the script is executed within an action of the web frontend, it will

automatically be surrounded by a transaction. If the script is executed or debugged

without being initiated by the web frontend, a transaction needs to encapsulate the

script by using one of the following options:

Controlled by script: In this case, the script needs to contain code which encap-

sules actions within a transaction. For creating a transaction, see the i-views JavaScript

API reference.

Read only: Allows executing/debugging of the script as long as no writing actions are

being executed on the graph.

Read and write: Allows reading and writing of graph structures, without explicit trans-

action control in the script code.

Output/Errors

Technical Handbook 5.8

221/488

Copy

to

clip-

board

Copies the output/errors to the clipboard.

SaveStores the output/errors onto the filesystem of the PC.

Variables and values

New

(Strg+N)

Creates a new variable.

Delete

(Strg+D)

Deletes the selected variable.

Iden-

tify

vari-

ables

au-

to-

mat-

i-

cally

.

Value

set/edit

String: set the selected variable value to a string

Semantic element: sets the variable value to a semantic element from the graph

Additional test script

Ad-

di-

tional

test

script

As soon as the JavaScript code is embedded within a function, the script can be de-

bugged by invoking its superordinate function using the additional test script. At the

same time, the additional test script allows passing on required parameter values to

the function.

Debug

Functionalities: Setting of breakpoints, stepping through code, evaluating expressions

Technical Handbook 5.8

222/488

Start/Resume

(F4)

This action starts executing the script, if no breakpoints are set or it starts debug-

ging the script (step-by-step) if at least one breakpoint has been set before.

Caution:When a breakpoint is set at a code line which only includes a comment,

the breakpoint will be ignored.

Single

step

(F5)

Executes the next logical step.

Single

step

(entire

block)

(F6)

Executes the current block completely.

Re-

turn

from

con-

text

(F7)

Executes the referenced code and returns to the originally invoked code.

Sus-

pend

(F9)

Suspends (pauses) executing the code. When debugging, the debugger goes on

to the next breakpoint nevertheless.

Termi-

nate

(F10)

Terminates executing or debugging the script.

Eval-

uate

ex-

pres-

sion

Serves for evaluating the value of a variable after the debugger has reached the

next breaktpoint.

Technical Handbook 5.8

223/488

Edit .

Combined

Functionalities: Combines Script execution and output into one view

1.4.5 API extensions

1.4.5.1 Additional functions

The API can be extended by adding functions to the prototypes. The following example ex-

tends schema prototype objects to print schema information.

// Print the schema of the instances and subtypes of a type
$k.Type.prototype.printSchema = function() {

this.typesDomain().printSchema("Type schema of \"" + this.name() + "\"");
this.instancesDomain().printSchema("Instance schema of \"" + this.name() + "\"");
this.subtypes().forEach(function(subtype) {

subtype.printSchema();
});

}

// Print information about a property type
$k.PropertyType.prototype.logPropertySchema = function() {

$k.out.print("\t" + this.name() + "\n");
}

// Attribute types print their type
$k.AttributeType.prototype.logPropertySchema = function() {

$k.out.print("\t" + this.name() + " (Attribute of type " + this.valueRange().type() + ")\n");
}

// Relation types print their target domains
$k.RelationType.prototype.logPropertySchema = function() {

$k.out.print("\t" + this.name());
var inverse = this.inverseRelationType();
if (inverse)
{ var inverseDomains = inverse.domains();

Technical Handbook 5.8

224/488

if (inverseDomains.length > 0)
{

$k.out.print(" (Relation to ");
var separate = false;
inverseDomains.forEach(function(inverseDomain) {

if (separate)
$k.out.print(", ");

else
separate = true;

$k.out.print("\"" + inverseDomain.type().name() + "\"");
});
$k.out.print(")");

}
}
$k.out.cr();

}

// Print all properties defined for a domain
$k.Domain.prototype.printSchema = function(label) {

var definedProperties = this.definedProperties();
if (definedProperties.length > 0)
{

$k.out.print(label + "\n");
definedProperties.sort(function(p1, p2) { return p1.name().localeCompare(p2.name()) });
definedProperties.forEach(function(propertyType) {

propertyType.logPropertySchema();
});

}
}

// Print the entire schema
$k.rootType().printSchema();

1.4.5.2 Define your own prototypes

The prototype of a semantic element is usually one of the built-in prototypes (Instance, Re-

lation etc.). It is possible to assign custom prototypes to instances of specific types with the

function mapInstances(internalName, protoype).

Example: A basket prototype

// Define a Basket prototype with a function totalPrice()
function Basket() { }

Basket.prototype.totalPrice = function() {
return this.relationTargets("contains").reduce(

function(sum, item) {
return sum + item.attributeValue("price");

},
0);

}

Technical Handbook 5.8

225/488

// Set the prototype of instances of the basket type
$k.mapInstances("Basket", Basket);

// Print the total price of all baskets
var baskets = $k.Registry.type("Basket").instances();
for (var b in baskets)

$k.out.print(baskets[b].totalPrice() + "\n");

For using within other scripts, the module needs to be loaded first:

$k.module(’myBasketSkript’);
var basket = $k.Registry().elementWithID(’ID_123’);
$k.out.print(basket.totalPrice() + "\n");

1.5 REST services

The REST interface can be used for read and write access to the Knowledge Graph. To do so,

you define resources (which describe the interface behavior when accessing a resource) in

the Knowledge Graph and services (summarize several resources.

The behavior of a resource is controlled using scripts. In addition, predefined resources may

also be used.

Access takes place via HTTP requests that are structured according to the pattern

https://<hostname>:<port>/[<service-path>||<service-id>]/<resource-path-and-parameter>

1.5.1 Configuration

The REST components must be added in the Knowledge Graph. These define the necessary

schema, which is found in the “Technical” area -> “REST” in the Knowledge Builder.

The REST interface is usually provided by the bridge service. This responds to HTTP prompts

using the REST configuration in the Knowledge Graph. The interface is already included in

the tryout version of the Knowledge Builder, and no bridge service is required.

Changes to the configuration in the Knowledge Graph do not automatically affect interfaces

that are already running. This occurs when the menu item “Administrator -> Update REST
interface” is executed in the main menu of the Knowledge Builder.

The bridge service requires a suitable configuration file (bridge.ini). The name of the server

(host), the Knowledge Graph (volume) and the REST service ID is entered in this. The line with

“services” can be omitted entirely, and the resources of all existing service objects are then

automatically activated.

[Default]
host=localhost
loglevel=10

[KHTTPRestBridge]
volume=demo
port=8086

Technical Handbook 5.8

226/488

services=core,extra

1.5.2 Services

Services combine several resources. Resources may be featured by several services.

The service editor in the Knowledge Builder shows the resources in its structure view. A new

resource is created using “Link new” and is added to the service. A resource that has already

been defined is added to the service using “Link existing”.

1.5.3 Resources

Resources describe the response in the event of an HTTP prompt at the interface. There are

the following types of resources:

Resource Description

Script resource Resources that can be defined by scripts.

Built-in resource Predefined resource with a response that is defined by the sys-

tem. These resources are created by the component.

Static file resource Delivers files from the file system.

A resource has the following configurable properties:

Property Description

Path pattern Defines the URL of the resource relative to the address of the

service. The path can be parameterized by adding parameters

in curly brackets:

albums/{genre}

Several parameters can be specified. Each parameter must,

however, be a part completely separated by “/”:

albums/{genre}-{year}

is not valid,

albums/{genre}/{year}

is valid

Part of service Services that use this resources

Description Description for documentation purposes

Technical Handbook 5.8

227/488

Requires authentication Authentication is required for access to the resource

1.5.3.1 Methods

A resource is linked to one or moremethods. This defines the response as well as the sup-

ported input and output types (content types). The methods and types of the HTTP request

are used to select a suitably configured method.

In the structure view, methods are displayed as subelements of resources and can be cre-

ated/deleted there.

Method Description

HTTP method Supported HTTP methods (GET, POST, PUT, DELETE). Multiple

entries are possible.

Input media type Only POST/PUT: expected content type of the content of the

enquiry.

Output media type Content type of the response. If the request specifies an ex-

pected content type via “Accept”, the output media type must

match this.

Script Registered script for the definition of the response (only rele-

vant for script resources)

Transaction Transaction control (only relevant for script resources)

Transaction control is relevant for write accesses to the Knowledge Graph because these are

only possible within a transaction.

Transaction control Description

Automatic For GET read access only; for POST/PUT/DELETE the script is

executed in a transaction.

This is the default setting.

Controlled by script No transaction; the script must control this itself.

Read Read access only; the script cannot start a transaction.

Write The script is executed in a transaction.

Technical Handbook 5.8

228/488

1.5.3.2 Script resource

A script is used to define the response to an HTTP query for a method of a script resource.

For this purpose, the respond function (request, parameters, response) that must be defined

in the script is called from the interface.

Argument Type Description

request $k.HttpRequest Request (URL, header etc.)

parameters Object Parameter extracted from the request

response $k.HttpResponse Response

The function then fills out the header and content of the response. There is no return value.

If a type has been defined for a parameter (e.g. xsd:integer), then the converted value is

transferred. If not, a string is transferred. Parameters that can occur more than once by

definition are always transferred as an array.

If an output content type was defined for the response in the method, this is set automati-

cally. Alternatively, it is also possible to define the content type in the script.

The following script searches for albums and converts them into JSON objects. The parame-

ters of the resource are transferred to the query as search parameters.

function respond(request, parameters, response)
{

var albums = $k.Registry.query("albums").findElements(parameters);
var albumData = albums.map(function(album) {

return {
name: album.name(),
id: album.idString(),

}});
response.setText(JSON.stringify(albumData, undefined, "\t"));
response.setContentType("application/json");

}

You could use this script, for example, in the resource

albums/{genre}/{year}

and use the search parameters “genre” and “year” as the search conditions in the “albums”

query.

1.5.3.3 Built-in resources

Built-in resources are predefined resources with a response specified by the system. Each

predefined response can be assigned using an assigned value of the string attribute Rest re-

source ID.

Technical Handbook 5.8

229/488

Rest resource ID

Method

Description

BlobResource GET Returns the binary content of an existing

blob attribute.

The blob attribute is identified using the

query parameter “blobLocator”.

Optionally, the parameter “allowRedirect”

can be used to define that blobs may not be

obtained directly by the blob service (fixed

value: false).

BlobResource POST,

PUT

Changes the binary content of a blob at-

tribute.

The blob attribute is identified using the

query parameter “blobLocator”. Depend-

ing on the type of the blobLocator, a

new attribute is created or an existing one

changed.

EditorConfigResource GET,

POST,

PUT

Output and import of an XML representa-

tion of a semantic element.

ObjectListResource GET Returns a table of instances or subtypes of

the specified type. The set of objects can

optionally be filtered, sorted or be defined

directly.

ObjectListPrintTemplateResource GET Returns a table of instances or subtypes in

printed form. The print template must be

specified.

ObjectListPrintTemplate Re-

sourceWithFilename

GET Returns a table of instances or subtypes in

printed form. The print template must be

specified. The parameter (filename) is not

evaluated, and is only used to improve its

use in the browser.

TopicIconResource GET Returns the icon or image of the specified

semantic element.

Version 4.1 or higher of i-views allows a JavaScript (rest.preprocessScript) to be attached to

the resource. The function it contains (preprocessParameters (parameters, request) can

supplement the parameters. Any blobLocator (or the associated blob attribute) still missing

can, for example, be determined from the parameters transferred, which would otherwise

require an additional script resource call.

BlobResource

This integrated resource allows contents of file attributes to be loaded and saved.

Download
The “GET” method can be used to download the binary content of an existing file at-

Technical Handbook 5.8

230/488

tribute. The file attribute is then identified by means of the query parameter “blobLocator.”

Upload
In the case of an upload, the parameter “blobLocator” either identifies an existing file at-

tribute or a potential file attribute (i.e. new one to be created). The syntax for a potential

attribute has the following form: “PP∼ID1_115537458∼ID36518_344319903,” whereby the
first ID represents the semantic element and the second ID the attribute prototype.

The binary data can optionally be transmitted as a multipart or single part. In the case of

multipart, several files can potentially be uploaded at the same time, which, of course, only

makes sense when each file is written to a newly created file attribute. In any case, the file

name must be set for every file transmitted.

The optional parameter “binaryKey” defines the form key used to transmit the binary data in

multipart.

If the optional Boolean parameter “uploadOnly” is set to “true,” then the binary data are

uploaded only, and are not written into the file attribute. This mode is used in interplay with

the ViewConfiguration Mapper. The JSON value is returned in this case (fileName, fileSize,

binaryContainerId), which can be written into the attributes using the mapper in a second

step. The content type of the returned JSON value is normally “application/json”, however

can be set to another value using the parameter “overrideContentType” should the browser

(e.g. IE) encounter problems doing so.

Topic icon

The following path can be used to load the image file to a given topic. If an individual does not

have an image file of their own, the image file of the type is used, which is, in turn, inheritable.

The optional parameter “size” can be used to select the image file with the size that is most

suitable, providing several image sizes are saved in the Knowledge Graph.

http://{server:port}/baseService/topicIcon/{topicID}?size=10

Object list

The following path can be used to request an object list in the JSON format:

http://{server:port}/baseService/{conceptLocator}/objectList

The object list type is referenced via the “conceptLocator” parameter, which is followed by

the format for topic references in the remaining URL (see link).

Alternatively, the “conceptLocator” can also reference the single prototype (individual or type)

of the type to be used.

The optional “name“ parameter determines the object list to be used for the output.

Filter

The optional and multi-value query parameter “filter“ can be used to filter the object list. A

filter can take two different forms:

1. <column name/column no.> ∼ <operator> ∼ <value>

2. <column name/column no.> ∼ <value>

The available operators are: equal, notEqual, greater, less, greaterOrEqual, lessOrEqual, equal-

Cardinality, containsPhrase, covers, isCoveredBy, distance, fulltext, equalGeo, equalPresent-

Time, greaterOverlaps, greaterPresentTime, lessOverlaps, lessPresentTime, equalMaxCardi-

nality, equalMinCardinality, overlaps, unmodifiedEqual.

Technical Handbook 5.8

231/488

Sorting

The optional and multi-value query parameter “sort” can be used to sort the object list. The

order of sorting parameters determines the sorting priority. Sorting can be specified in two

forms:

1. <column name>

2. {-}<column no.>

If you prefix a minus sign in variant 2, sorting is performed in descending order, otherwise it

is in ascending order.

Setting the starting set of the list

The optional “elements” query parameter can be used to transmit a comma-separated list

of topic references to be used as list elements.

As the list of elements can be very long, the request can also be sent as POST and the param-

eters can be transferred as form parameters.

Setting the starting set of the list via KPath

The optional query parameters “elementsPath” and “startTopic“ can be used to calculate

the initial elements of the list. If these parameters are not set, the initial set consists of all

individuals or all subtypes (in case of a type object list) of the type specified via “conceptLo-

cator.”

Here “elementsPath” is a KPath expression and “startTopic” is a reference to the topic with

which the evaluation of the KPath is to be started. The form of the “startTopic” parameters

corresponds to that of the “conceptLocator.”

Inheritance

Inheritance can be suppressed via the optional query parameter “disableInheritance.” The

parameter only makes sense if no “elementsPath” is set.

JSON output format (example)

{
rows: [{
topicID: "ID123_987654321",
row: ["MM",
"Mustermann",
"Max",
"111",
"m.mustermann@email.net",
"10",
"6",
"2000-01-01",
“project A, project B"]
},
{
topicID: "ID987_123456789",
row: ["MF",
"Musterfrau",
"Maxine",
"222",
"m.musterfrau@email.net",

Technical Handbook 5.8

232/488

"10",
"8",
"2000-01-01",
“project X, project Y, project Z"]

}],
columnDescriptions: [{
label: "Login",
type: "string",
columnId: "1"

},
{
label: “Last name",
type: "string",
columnId: "2"

},
{
label: “First name",
type: "string",
columnId: "3"

},
{
label: “Telephone extension",
type: "string",
columnId: "4"

},
{
label: “email",
type: "string",
columnId: "5"

},
{
label: “Availability",
type: "number",
columnId: "6"

},
{
label: “Expenditure",
type: "string",
columnId: "7"

},
{
label: “created on",
type: "dateTime",
columnId: "8"

},
{
label: “Project",
type: "string",
columnId: "9"

}]
}

Object list print template

The following path can be used to fill an object list in a print template for list and download

Technical Handbook 5.8

233/488

the result:

http://{server:port}/baseService/{conceptLocator}/objectList/printTemplate/

{templateLocator}/{filename}

The service functions exactly the same way as retrieving an object list, however, as an addi-

tional parameter, features a reference to the individual of the type print template for list in

the Knowledge Graph.

“templateLocator”must have one of the formats described under “General”

The optional path parameter “filename” is not evaluated, and is used to improve browser

performance.

The header field “Accept” is used to control the output format into which conversion occurs.

If there is no header field, or the value is “*/*”, no conversion occurs. Accept with multiple

values is not supported and will result in an error message.

The optional query parameter “targetMimeType” is used to overwrite the value of the “Ac-

cept” header field. This is necessary when the user would like to call the request from a

browser, and has no influence on the header fields.

Print topic

The following path can be used to fill out a topic in a print list template and download the

result:

http://{server:port}/baseService/{topicLocator}/printTemplate/

{templateLocator}/{filename}

“templateLocator”must have one of the formats described under “General”

The optional path parameter “filename” is not evaluated, and is used to improve browser

performance.

The header field “Accept” is used to control the output format into which conversion occurs.

If there is no header field, or the value is “*/*”, no conversion occurs. Accept with multiple

values is not supported and will result in an error message.

The optional query parameter “targetMimeType” is used to overwrite the value of the “Ac-

cept” header field. This is necessary when the user would like to call the request from a

browser, and has no influence on the header fields.

Document format conversion

You can use the following path to convert a document to another format (e.g. odt in pdf):

http://{server:port}/baseService/jodconverter/service

The service maps the JOD converter (see http://sourceforge.net/projects/jodconverter/) and

is used for downward compatibility for installations that used to be operated with the JOD

converter.

For the service to work OpenOffice/LibreOffice (version 4.0 or above) must be installed and

the configuration file "bridge.ini" must have an entry that refers to the "soffice" file.

[file-format-conversion] sofficePath="C:\Program Files (x86)\LibreOffice 4.0\program\soffice.exe"

1.5.3.4 Static File Resource

Delivers files from the file system.

Technical Handbook 5.8

234/488

With this type of resource, you merely use Path pattern to specify the directory under which

the files are delivered. The directory is addressed relative to the content directory of the REST

bridge.

Example:

Enter an icons directory with the file bullet.png. The path pattern of the resource is icons, the

corresponding service has the Service ID test. The file bullet.png is thus accessed via:

http://localhost:8815/test/icons/bullet.png

1.5.3.5 Resource parameters

The parameters for the resource can be defined below methods. This is not absolutely

essential, does, however, have a number of advantages:

• The parameters can be checked and converted by using type specifications (e.g. in num-
bers or objects)

• Documentation for customers

The following parameter properties can be configured:

Parameter name Name of the parameter

Style Type of parameter

• path (part of the path of the URL)
• query (query parameter of the URL)
• header (HTTP header)

Type Data type of the parameter. Parameters have been validated

and converted when passed to the script.

Repeating Parameters may occur multiple times.

When this is activated, an array of values is always passed to

the script, even if there is only one parameter value in the re-

quest.

Required Parameter must be specified

Fixed value Default value when no parameter was specified.

1.5.4 CORS

In the case of OPTIONS requests, the REST interface responds by default with

Access-Control-Allow-Origin: *
Access-Control-Allow-Headers: Origin, X-Requested-With,Content-Type, Accept

These headers can be configured in the configuration file (bridge.ini):

Technical Handbook 5.8

235/488

[KHTTPRestBridge]
accessControlAllowOrigin=http://*.i-views.de
accessControlAllowHeaders=Origin, X-Requested-With,Content-Type, Accept

1.5.5 OpenAPI documentation

i-views offers the possibility to generate OpenAPI-3.0 documentation for configured services.

For this purpose, service configurations and resource configurations can be enriched with

documentation data.

1.5.5.1 Configuration

Service

Property Description Mapping to

OpenAPI 3.0

Service De-

scription

Free text description of the service; supports GitHub Fla-

vored Markdown

info.description

Service Ver-

sion

Version specification which is interpreted as Semantic Ver-

sion.

info.version

Service ID

info.title

OpenAPI

compo-

nents

Script which generates reusable OpenAPI-3.0 components

in forms of a JSON object.

components

Resource

Property Description Mapping to

OpenAPI 3.0

Resource

Description

Free text description of the resource, supports GitHub

Flavored Markdown

paths.{path}.description

Technical Handbook 5.8

236/488

Method

The mappings to the OpenAPI elements are specified relatively to paths.{path}.{method}

Property Description Mapping to

OpenAPI 3.0

Method de-

scription

Free text description of the resource; supports GitHub

Flavored Markdown

.description

Request

Body

See section Request Body

.requestBody

Response See section Response

.responses.{code}

Parameter

Themappings to theOpenAPI elements are specified relatively to paths.{path}.{method}.parameters.{index}

Property Description Mapping to OpenAPI 3.0

Parameter

Descrip-

tion

Free text description of the parameter; sup-

ports GitHub Flavored Markdown

.description

Parameter

name

.name

Repeating In case of path parameters, this option MUST

NOT be enabled.

.explode: true

.schema: {"type": "array"}

Required In case of path parameters, this option MUST

be enabled.

.required

Technical Handbook 5.8

237/488

Style

.in

Type

.schema

Request Body

Themappings to theOpenAPI elements are specified relatively to paths.{path}.{method}.requestBody

Prop-

erty

Description Map-

ping

to

Ope-

nAPI

3.0

Re-

quest

Body

De-

scrip-

tion

Free text description of the body; supports GitHub Flavored Markdown

.description

Re-

quired

.required

Media

type

Replaces the Input media type which could be stored at the method re-

garding i-views 5.3. i-views 5.4 supports description of several possible

request formats. See section Media Type. .content.{mediaType}

Response

For a valid OpenAPI documentation, a response needs to be documented for each request.

The specified mappings relate to their response object, respectively.

Technical Handbook 5.8

238/488

Prop-

erty

Description Map-

ping

to

Ope-

nAPI

3.0

Re-

sponse

Code

HTTP status code of the response Key

Re-

sponse

De-

scrip-

tion

Free text description of the response; supports GitHub Flavored Mark-

down

.description

Me-

dia

type

Replaces the Output media type which could be stored at the method re-

garding i-views 5.3. i-views 5.4 supports description of several response

formats. See section Media Type. .content.{mediaType}

Media Type

From OpenAPI 3.0 and on, the support for several input formats and output formats by a

request can be documented by specifying several media types.

Prop-

erty

Description Map-

ping to

OpenAPI

3.0

Media

Type

Name

The MIME string which defines the Media Type. Key

Ope-

nAPI

schema

Script which generates a JSON schema object, which in turn de-

scribes the format of the structure with this Media Type.

.schema

JSON schema definitions

For creating JSON schema for further descriptions of input and output, scripts can be defined

at different locations. The scripting supports a subset of the JSON schema standard which

can be seen in the OpenAPI specification.

Example script for OpenAPI components:

Technical Handbook 5.8

239/488

function openAPIComponents() {
return {

"schemas": {
"Example": {

"properties": {
"id": { "type": "integer" },
"name": { "type": "string" }

}
}

}
}

}

Exmaple script for OpenAPI schema with reference to the definition above:

function swaggerJSONSchema() {
return {

"$ref": "#/components/schemas/Example"
}

}

1.5.5.2 Generating the API documentation

Manual generation within the KB

For generating a .json file manually by means of the OpenAPI documentation within the

Knowledge Builder, a button Export as OpenAPI 3.0 is provided above the list of the services.

CLI

The same export also is provided by means of the command line interface:

bridge-64.exe -exportBuiltInRequestAPI {filename} {serviceID}

As REST API endpoint

In i-views 5.4, a built-in resource called APIResource is available, which provides the API docu-

mentation. It can be added to the respective service bymeans of the button and it is available

at /api or at the configured path accordingly.

1.6 Reports and printing

You can use the printing component to use document templates (ODT/DOCX/XLSX/RTF files)

with KPath expressions on objects or object lists and then use them to generate an adapted

output file, which can be either printed or stored.

The adding of the printing component via the Admin tool creates configuration schemas for

objects (“print template”) and lists (“print template for lists”) in the Knowledge Graph. The ex-

istence of this component is prerequisite for the print function being available in Knowledge

Technical Handbook 5.8

240/488

Builder or via the REST interface.

1.6.1 Create print templates

In Knowledge Builder, print templates are created in the “Technical -> Printing component”
area. Each print template object contains a print template document (ODT, DOCX, RTF) and

a relation that specifies to which objects the print template is to be applied.

The following example shows an ODT print template for objects of the “Task” type.

The following chapters explain how print template documents are created.

1.6.1.1 Create RTF templates

The RTF template files can contain evaluable KPath expressions with the key wordsKPATH_EXPAND

andKPATH_ROWS as well as calls for registered KScripts with the key wordsKSCRIPT_EXPAND

and KSCRIPT_ROWS. The path expressions or the name of the script to be called are always

placed between angle brackets and after the key word, separated by a space.

KPATH_EXPAND

The KPath expression after this key word should return a single semantic object or a simple

value (date, string etc.). In the evaluation the original expression is replaced by the result.

The formatting of the expression is retained, and breaks in the value are converted into line

breaks.

Example:
The template is:

Sender:
<KPATH_EXPAND @$address$/rawValue()>

Technical Handbook 5.8

241/488

After the evaluation the output file says:

Sender:
intelligent views gmbh
Julius-Reiber-Str. 17
64293 Darmstadt

KSCRIPT_EXPAND

As an alternative to the path expression, KSCRIPT_EXPAND can be used to call a registered

KScript. The output of this script (script elements with <output>) is transferred to the doc-
ument. Scripts are registered in the Knowledge Builder in the folder TECHNICAL/Registered

objects/Scripts

Example:
The template is:

<KSCRIPT_EXPAND aScriptWithOutput1to9>

After the evaluation the output file says:

123.456.789

KPATH_ROWS

This expression must be in a table. The KPath expression after this key word must return a

list of semantic objects. During evaluation the table row of the KPATH_ROWS expression is

evaluated once for each result of the KPath expression. This allows tables to be completed

dynamically. By the way, it does not matter which column contains the KPATH_ROWS expres-

sion.

Example:
The template is:

Parts (<KPATH_EXPAND topic()/∼$hatParts$/size()>
pieces)

Note

<KPATH_EXPAND topic()><KPATH_ROWS
topic()/∼$hatPart$/target()/sort(@$name$, true)>

<KPATH_EXPAND
topic()/@$note$>

After the evaluation the output file says:

Parts (3 pieces) Note

RTF print

ODT print Replaces RTF print

Conversion service Optional service

Technical Handbook 5.8

242/488

KSCRIPT_ROWS

In case of KSCRIPT_ROWS the objects for the table rows are determined via a registered

KScript. The name of the registered script is specified directly after KSCRIPT_ROWS. The script

must be of the KScript type and return the objects for output.

Example:
The template is:

Column1 Column2

<KSCRIPT_ROWS allPersons><KPATH_EXPAND
@$lastname$>

<KPATH_EXPAND @$firstname$>

After the evaluation the output file says:

Column1 Column2

Meier Peter

Schulze Helmut

1.6.1.2 Create ODT documents (OpenOffice)

Printing using the ODT format (Open Document Text, open standard) has many advantages

compared to the RTF format:

• The embedded script instructions are not part of the text, and are instead filed in special
script elements. This ensures that the formatting is not destroyed by lengthy scripts.

• The ODT format supports a large set of format instructions (comparable with MS Word)
that RTF cannot process.

• As a format, RTF does not have a uniform standard (MS Word can, for example, “do
more” than the standard).

• Editing of the RTF templates is highly fragile. MS Word, above all, tends to supplement
the templates with control elements (for example, the cursor position current during

the most recent editing), preventing the scripts from being reliably identified.

ODT templates can be created using OpenOffice or LibreOffice. They are created the same

way as RTF templates are created, with the only difference being that the path/script instruc-

tions are saved in script elements, as the following diagram shows.

Technical Handbook 5.8

243/488

The script field can no longer be integrated in LibreOffice 5. As an alternative to this, the

“Input field” can be used:

Insert > Field command > Other field commands (alternative keyboard shortcut Ctrl+F2)

The input field is found there on the “Functions” tab.

Technical Handbook 5.8

244/488

“Note” is equivalent to the previous “Script type”; after clicking on insert, another window

opens in which the script can be entered.

Available script types

There are the following script types:

• KPath : analogous to KPATH_EXPAND
• KScript : analogous to KSCRIPT_EXPAND
• KPathRows : analogous to KPATH_ROWS
• KPathImage : for embedding images
• ScriptFunction: Calls a function of a registered script. A string with the following format
is expected as text:

ScriptID->Functionname()
The function call is automatically expanded by two arguments: the semantic element

and the variables determined by the environment

Technical Handbook 5.8

245/488

An example of a script that was called:

function headerLabel(element, variables)
{

return element.name().toLocaleUpperCase();
}

• ScriptRowsFunction: Analogous to ScriptFunction. Table rows are generated for the
returned objects, analogous to KPathRows.

• ScriptImageFunction: for adding bitmap images
• ScriptSVGImageFunction: for adding SVG drawings
• DataPath: The “script for generating JSON contents”must be set on the print template.
The corresponding key can now be used to access the values of the JSON object.

Example of generating the JSON object:

function templateData(element)
{

return {
name: element.name(),
idNumber: element.idNumber(),
someData: { idString: element.idString() }

}
}
To access the value idString, for example,

someData.idString

must be set as text.

• DataRowsPath: In table rows or sections (Libre Office only), DataRowsPath can be used
to transform an array of objects in the templateData JSON to a table or sequence of

sections in the printed document. Each object in the array is transformed into a new

row with identical formatting as the row the DataRowsPath element is placed in. This

allows having lists of variable length in the printed document. DataPath and DataCon-

ditionPath elements in the same table row or section as a DataRowsPath element are

interpreted relative to the path of the DataRowsPath element.

function templateData(element) {
return {

rowData: [
{ name: "Element 1", someValue: 123 },
{ name: "Element 2" }

]
}

}

• DataConditionPath: Like DataRowsPath elements, DataConditionPath can be placed
in table rows or sections. Unlike DataRowsPath elements, DataConditionPath can ref-

erence anything in the templateData JSON, not only arrays of objects. When the refer-

enced property in the templateData JSON is a JavaScript falsy value (false, undefined,

Technical Handbook 5.8

246/488

null, 0 or an empty String) or an empty Array, the table row or section the DataCondi-

tionPath element is placed in is removed from the printed document.

File attributes or URLs can be used for embedding images. When URLs are used, an attempt

is made to load an image from the address specified.

Embedded images are always sourced in their original size (at 96d dpi). If another size should

appear in the printout, a frame with the required dimensions (absolute dimensions in cm

must be used!) must be built around the script element. The resulting embedded image is

then fit into the frame so that the frame dimension is not exceeded while retaining the image

aspect ratios.

1.6.1.3 Create DOCX documents (Micrsoft Word)

DOCX templates can be created using Microsoft Word 2007 or higher.

They are created the same way as RTF templates are created, with the only difference being

that the path/script instructions are saved in text content control elements.

To insert the control elements, it is first necessary to activate the developer tools in Word. To

do so, go to theOfficemenu, open theWord options, go to the Popular commands category

and activate the option Show Developer tab in the ribbon. Now go to the Developer tools

tab and activate Design mode.

To add KScript/KPath expressions, insert a Text-only content control element. The text of

the control element is replaced by the calculated text. Go to the properties of the control

element (via the context menu on the closing bracket) and specify the KScript or KPath under

Title. If you leave the title empty, the text of the control element will be used instead. Enter

the script type under Tag. The available script types are all the types available in ODT, with

the exception of KPathImage.

Technical Handbook 5.8

247/488

1.6.2 Create print templates for lists

Print templates for lists are saved in the “TECHNOLOGY/Print components” area in the Knowl-

edge Builder. Each “Print template for lists” object contains a print template document (XLSX)

and a relation that specifies to which objects the print template is to be applied. Optionally,

an object list can be specified that should be used for generating the output. This allows the

format of the list that the user sees on the screen, and the format of the list that was output,

to be different.

When the attribute “Document (print template)” was not created, then when a document

is generated, an Excel file is generated that contains one spreadsheet with the data in the

object list and the column headings from the object list configuration, i.e. an Excel file does

not necessarily have to be specified as the print template.

The following example shows a print template for lists with objects of the “Task” type.

Technical Handbook 5.8

248/488

XLSX templates can be created using Microsoft Excel 2007 or higher. These templates only

function with object lists.

Creating the Excel file

A standard Excel file is used as a template, andmust include an additional spreadsheet called

“data”. This spreadsheet is subsequently filled with the object list data, and this without

headings and beginning with cell A1.

The other spreadsheets can reference data from the “data” sheet in formulas. i-views ensures

that all formulas are calculated again as soon as the completed Excel file is next opened using

Excel.

Technical Handbook 5.8

249/488

1.6.3 Document format conversion with OpenOffice/LibreOffice

The output format of the print operation corresponds to the template used. If you would like

to receive a different output format, you have to set up a converter.

To do so, you need an installation of LibreOffice or OpenOffice Version 4.0 or above on the

computer that is to perform the conversion. This is usually located in the same place as the

bridge or Job-Client that also executes the print operation.

In the configuration file (bridge.ini, jobclient.ini, etc.) you also have to specify the path to

the "soffice” program which is part of the LibreOffice/OpenOffice installation and located in

the "program" subdirectory there. This must be specified as an absolute path; relative paths

(..\LibreOffice\etc.) are not possible here.

[file-format-conversion]
sofficePath="C:\Program Files (x86)\LibreOffice 4.0\program\soffice.exe"

Conversion service

If you do not want to keep a LibreOffice/OpenOffice installation on all workstations or server

installations fromwhich formats are to be converted, an appropriately converted REST bridge

can perform the conversion.

To do so, the .ini file of the REST bridge must have the following format:

[Default]
host=localhost

[KHTTPRestBridge]
port=3040
volume=cardAdmin
services=jodService

[file-format-conversion]
sofficePath="C:\Program Files (x86)\LibreOffice 4.0\program\soffice.exe"

In the Admin tool, you enter the address at which the conversion service can be reached

under system configuration/components/conversion service.

Example:

http://localhost:3040/jodService/jodconverter/service

Document formats

To ensure output formats are available, appropriately configured objects of the “Converter

document format” type must be available in the Knowledge Graph.

The important thing is that not all formats can be converted into all formats. The most

important ones are:

Name Exten-

sion

Mime type

Technical Handbook 5.8

250/488

Portable Document Format pdf application/pdf

OpenDocument Text odt application/vnd.oasis.opendocument.text

Microsoft Word doc application/msword

1.7 Tagging

The tagging component allows objects from the Knowledge Graph (persons, topics, etc.) to

be found or be created in documents.

Tagging requires:

• A configured tagging component in the Knowledge Graph
• A tagging software (Intrafind, OpenNLP) that finds potential objects in a text

Tagging is performed in three steps

1. The document text for tagging is defined (e.g. the value of a text attribute)

2. The text is passed on to the tagging software, which analyzes the text and delivers a

series of tags

3. The configuration is used to search for existing objects in the Knowledge Graph for each

tag, and to create any potentially new objects. The objects are linked with the document

by means of a relation.

1.7.1 Configuration

To use tagging, you need to use the Tagging component which can be added in the Admin

tool. This component sets up the required schema.

Following that, you can configure it in Knowledge Builder under “Technical” > “Tagging.”

Every tagging configuration consists of:

• An interface configuration of the tagging software to be used (Intrafind, OpenNLP)
• Configuration of the text extraction that determines the text to be tagged in a document
• Tag configurations that determine how objects are found, created and linked in the
Knowledge Graph

1.7.1.1 Tagging configuration

The tagging configuration bundles all the information required for tagging.

It is however mandatory to specify the tagger interface to be used.

Specification of the text extraction to be used is optional. Alternatively this can also be deter-

mined dynamically (see the corresponding sub-chapter).

Technical Handbook 5.8

251/488

Furthermore, it is possible to specify an adjustment script that can be used to influence tag-

ging. Additional adjustments can also be made in the configurations for tags and for text

extraction.

Newly created adjustment scripts contain commented-out function bodies. In order to acti-

vate them you only need to remove the comment signs.

1.7.1.2 Interface configuration

The Intrafind interface has the following settings:

Configura-

tion name

Freely selectable name

Parameter (optional) This is transferred to Intrafind using the interface and it controls

tagging

URL URL of the Intrafind tagger

Update-URL (optional) URL of the Intrafind List Service, used for export of known tags,

see also 1.7.1.5

In the case of OpenNLP, only the URL of the REST service is required along with the optional

configuration name.

The interface “Internal tagger” is only intended for test purposes / internal demos for which

connecting an external system is unwanted. This tagger makes no claim to returning results

that make sense.

Technical Handbook 5.8

252/488

1.7.1.3 Text extraction

If the text to be tagged is not determined dynamically, e.g. because only the text of a very

specific attribute type or the text of a document is to be extracted, text extraction must be

configured.

This configuration can be added on the “Text extraction” tab.

Configura-

tion name

Freely selectable name

apply to Object type to which this configuration applies. Is used if no explicit text

extraction is specified during the tagging configuration.

Script for

text extrac-

tion

Optional script for determining text

To specify the attribute types to be tagged, one or more text part extractions (hierarchically

sorted on the left side) are added to the text extraction. In each text part extraction, the

attribute type to be tagged is stored under “extracts text from.”

In addition to strings, blobs can also be used as text part extractions. Text is extracted from

these and forwarded to the tagging interface. To do this, text extraction must be configured

in the client (bridge or KB) (see chapter i-views services > Text extraction).

The optional script has three arguments

Technical Handbook 5.8

253/488

textDoc-

u-

ment

$k.TextDocumentOutputs the text to be tagged

ele-

ment

$k.SemanticElementThe element whose text is to be extracted

at-

tributes

$k.Attribute

[]

Array of attributes of the element. The attributes are collected ac-

cording to the configuration.

The following example writes the values of the attributes in sequence:

function extractText(textDocument, element, attributes)
{

attributes.forEach(function(attribute) {
textDocument.println(attribute.valueString());

});
}

1.7.1.4 Tag types

The tag type configuration determines how objects are found, created and linked in the

Knowledge Graph. To do this, you can specify a separate configuration for each tag type

provided by the tagging interface. You can create a new configuration for the tagging config-

uration in the hierarchy view on the left side.

By default, the interfaces provide the following tag types:

Intrafind PersonName, Location, TFIDF

OpenNLP NP

A tag configuration can apply to one or more tag types.

Technical Handbook 5.8

254/488

The configuration offers the following settings:

Adap-

ta-

tion

script

Script to affect tagging. The template contains a row of functions that are com-

mented out and can be activated.

Ap-

ply

to

Type in the Knowledge Graph that corresponds to the tag type. If objects are to be

searched/created and no additional configuration information is specified, this type

is used.

Con-

fig-

u-

ra-

tion

name

Freely selectable name

Search

for

ex-

ist-

ing

ob-

jects

Search that contains the text of the tag as the searchString parameter and searches

for one suitable object in the Knowledge Graph.

Several searches can be specified, e.g. to keep the individual searches more com-

pact.

If there are several hits, query search must return the suitable hit. If several hits

of different quality are found, the highest quality hit is used. If no best hit can be

determined, no object is assigned.

Technical Handbook 5.8

255/488

Cre-

ate

tag

ob-

jects

au-

to-

mat-

i-

cally

If no object was found and this option was activated, new objects are created.

You have to ensure that the search for existing objects find these as new objects are

created every time tagging takes place.

If no adaptation script applies here, an object of the specified type is created for

“apply to” and the text of the tag is set as its name.

Tag

re-

la-

tion

type

This relation type is used to link documents to the objects found by the tagger.

Tag

type

The tag types specified above. If no tag type is defined, the configuration applies to

all types of tags.

Uses

ex-

port

Here, an export configuration can be specified which can be used to export all tags

of the type or a subset thereof. Refer to the next section for details.

1.7.1.5 Export of known tags

There is an export function used to save information from the Knowledge Graph in a tagging

service, e.g. Intrafind. This is currently only supported for Intrafind, where it performs the

following:

One, or several, lists can be generated that are then saved to the tagging interface. Each list

export assigns naming attributes (e.g. name, synonym) to the semantic elements for export.

The tagger then searches for these names in texts, and can deliver the suitable semantic

element as well. For example, the list of known organizations can be exported this way, and

the tagger can identify them reliably.

Technical Handbook 5.8

256/488

The Intrafind list export is configured for every tag type and is also influenced by the tag type

configuration. Generation configuration options:

Con-

fig-

ura-

tion

name

Freely selectable name

Nam-

ing

at-

tribute

(Optional) attribute that identifies the object. Multiple specifications possible. If no

attribute has been specified, the name attribute is exported by default.

Ob-

ject

filter

(Optional) A search can be specified here that specifies the set of objects. If no

search has been specified, all types that are assigned in the tag type configuration

by means of Apply to are exported.

Intrafind-specific matching options. These have a direct influence on the performance of the

tagging service:

Ob-

serve

up-

per/lower

case

Case-insensitive matching is activated by default. Case-sensitive matching can

be activated here.

Technical Handbook 5.8

257/488

Ignore

dia-

critics

(um-

lauts,

etc.)

[Presumably] This option is used to ignore characters with accents or umlauts,

e.g. Geräte will match with Gerate.

Pho-

netic

match-

ing

[Presumably] For example, match “photography” with “fotografie.”

Language-

dependent

match-

ing

This option activates the linguistic processing of the names transferred. In do-

ing so, it is important that the data is maintained correctly according to lan-

guage in the Knowledge Graph, as every language must be processed using its

own linguistics.

Performing the export

There are three relevant buttons to performing the export:

• the zigzag arrow (found at the export config or the "top" tagging configuration) "re-
freshes" the configuration cache, such that the newly changed configuration will have

an effect

• the floppy disk symbol found at the export config opens a dialog to save the exported
list to a directory. The same symbol found at the top tagging configuration will export

all lists at once. (hint: you have to select an existing directory, and the files will be written

into it)

• the up-pointing arrow (found at the top tagging configuration if configured) is used to
upload all lists via the Intrafind list service. This option is only possible, if the list service

was installed for the given environment, i.e. if the list service is configured. See also "In-

terface configuration" -> "Update-URL" above on how to configure that. After entering
the correct credentials, the upload will take place (this may take a while with spinning

cursor as feedback). On success, the response will indicate whether the service was

restarted and how many files were uploaded.

1.7.1.6 Overlapping filter group

The tagger may deliver several tags for one text passage. In some cases, the user explicitly

allows this overlap and have several tags displayed.

The overlap filter group does the following:

• All tags types that are summarized into a group like this must be free of overlaps.
• Within a group, a script can be used to specify a prioritization to influence the decision
about which tag is displayed in the end

• In order to allow overlaps, at least two groups like this must exist
• All tag types without a group are summarized in the “Default” overlap filter group.

Prioritization with script

Technical Handbook 5.8

258/488

/**
* When there are conflicting tags (e.g. overlapping), this function can influence the conflict resolution by building a sort key.
* The sortOrder compares the array from left to right, lower numbers are sorted before higher ones. If something larger is to have a higher priority, it therefore needs to be negated.
* e.g.: [-1, 3] < [0, 0] < [1, -3] < [1, -2]
*
* @param {$k.Tag[]} tags
* @param {$k.TaggingContext} taggingContext
* @returns {integer[]} an array of numbers that is used to sort the conflicting tags.
**/
function tagSortOrder(tag, taggingContext)
{

var smallestSpanReducer = function(minPos, span){return Math.min(minPos, span.start)};
var positionMinimum = tag.spans().reduce(smallestSpanReducer, Number.MAX_VALUE);
return [-tag.tagTypePriority(), -tag.canonicalText().length, positionMinimum];

}

A script must return a list of integers, whereby the first element in this list has the most

influence. In principle, it functions the same ways as sorting by several columns, meaning

that the second element is only used when the same value occurs in the first element.

Default prioritization

If no script has been specified, or the tag type is grouped in the implicit “Default” group, then

the following prioritization is used:

• Order of the tag types - higher priority first
• Longer tags given preference
• Position within the overlap (meaning in the case of “a red wall”, “a red” is given prefer-
ence over “red wall”, because it is closer to the front)

Also compare the script template.

1.7.2 View configuration

Two views are available for the display:

• Markup view
• Tag list

The markup view can be used in both the Knowledge Builder and in the ViewConfiguration

Mapper. The view can be used everywhere that other views such as properties or hierarchies

can be used.

The view has a permanently integrated tag button in the Knowledge Builder. There is an

integrated action type “Tag” in the ViewConfiguration Mapper, which can also be used in a

custom button.

The tag list is only available in the View-Configuration Mapper and is the content of a panel

(e.g. as a sub-configuration of a panel with a fixed view) there. If a markup view with tag

buttons was configured in another panel, its panel should be linked to the tag list panel

using the relation “Influenced” so that the tag list is updated after tagging.

Technical Handbook 5.8

259/488

Both views have the obligatory configuration setting “Tagging configuration used”, which con-

nects the view to the tagging configuration.

1.7.2.1 Debug Log

The KB can output debug information during the tagging process. The information is writ-

ten to the #tagging channel (see manual for documentation regarding channels) and can be

output to a file, for example.

To do so, create a .txt file in the directory of the KB and rename it “kb.ini”. Then add the

following content:

[Default] logtargets=tagging [tagging] type=file format=plain channels=tagging loglevel=DEBUG file=tagging.log maxLogSize=10 maxBacklogFiles=1

This creates a “tagging.log” file where you can view the tags found by Intrafind for the tag

types. This makes it possible to identify which strings are suggested by Intrafind as tags, and

also which tag types (e.g. signifterm/tfidf or organization) are used to find them.

1.7.3 Tagging by Script

Tagging can also be performed by script. To do so, create an object of the type $k.TaggingConfiguration.

The tag(context) function is used to perform the tagging. Tagging is controlled by an object

of the type $k.TaggingContext. Because it is stateful, a new one must be created every time

tag() is called. The TaggingConfiguration object is stateless and can be reused.

var document = $k.Registry.elementAtValue("RDF-ID", "opennlp-testdocument");
var configElement = $k.Registry.elementAtValue("tagging.name", "opennlp tagger config");
var tagger = $k.TaggingConfiguration.from(configElement);
var context = new $k.TaggingContext();
context.setSource(document);

Technical Handbook 5.8

260/488

tagger.tag(context);
$k.out.print("Found " + context.tags().length + " tags");

1.7.4 Required software

The Intrafind tagger must be purchased and installed separately. The corresponding In-

trafind List Service can be provided by i-views.

The OpenNLP connection is made using a REST interface to OpenNLP provided by i-views.

1.8 Development support

1.8.1 Dev tools

Different tools are available to facilitate development.

• K-Infinity plug-in: Offers support or JetBrains’s products This includes the synchroniza-
tion of source files, KJavascript and KPath support.

1.8.2 Dev service

The Knowledge-Builder provides the option of allowing access from external applications.

This allows, for example, synchronization with development environments or specific ele-

ments of an application to be opened from the browser.

The Dev service must be started in the Knowledge-Builder for this. To do so, start by opening

the Settings and in the Personal tab, going to Dev tools. A port can now be specified here at

which the service should be able to be reached. The service can be started and stopped

manually using the buttons next to it. If the “Automatic start” checkbox is activated, then the

service is automatically started with the Knowledge-Builder.

If the Knowledge-Builder features an ini file (the default name is “kn.ini”), then it can save the

settings permanently. The settings can also be entered manually in the ini file:

[DevService]
autostart=true
port=3050

1.9 KB plugins and components

1.9.1 Units component

The units plugin serves for adequate display of values of scale units - consisting of the nu-

meric value and its appended unit symbol. For different decimal prefixes, multiple entries

with relative factors can be defined for one and the same scale unit type. The output of the

values and their units takes effect within the Knowledge Builder and the web frontend via

the view configuration mapper. For example, an export can use the information to convert

the values of an attribute into another unit required by a target system (unit conversion).

Technical Handbook 5.8

261/488

Since 5.4, the units engine is an integrated component of the Knowledge Graph. After instal-

lation by means of the Admin Tool, the units component is available within the Knowledge

Graph in the section "TECHNICAL" > "Scale units". It contains the required object types "Kind
of Quantity" and "Scale Unit".

Examples:

• Kind of Quantity: length, voltage, temperature
• Scale unit: meter, inch, millivolts, Kelvin

A kind of quantity is related to the respective scale unit via the relation "measured in",

whereas a scale unit can be related to one kind of quantity only. Via the relation "Base unit

of", a scale unit is assigned to an attribute type. Attributes of this attribute type then are

entered and displayed in forms of the related scale unit.

The units component "ETIM" comes with standard units of the ETIM classification. These

units can be supplemented with customized units.

Configuration:

• "Unit symbol": string which is going to be appended to the value. For a value of "1", the
"Unit symbol (singular)" attribute is used instead.

Example: "2.5 cm", "4minutes", "1minute".

• "Factor": factor of the value in relation to the base value. The scale unit with factor "1"
represents the base value in which the attribute value is going to be stored.

Example: "Unit (distance)" has the scale unit "mm" with factor "1", the scale unit "cm"

has factor "10" and the scale unit "m" has the factor "1000". The ’raw value’ stored in a

related attribute therefore represents the value in millimeters, "mm".

• "Fraction": fraction of the value in relation to the base unit. By using factor and fraction,
a higher accuracy is achieved when converting units.

Note: When displaying attribute values by means of virtual property scripts, value() will re-

turn the attribute value itself whereas valueString() will return the value and its unit according

to the units plugin.

Formore information about the units plugin, please contact empolis intelligent views: support@i-

views.com.

1.9.2 Custom components

Custom components are bundles of semantic elements, queries, scripts and other elements.

These can be transferred to other Knowledge Graphs. Common usage scenarios:

• Define a component that acts as the base for specialized components
• Develop components and transfer them to integration and production systems

A component is an object that consists of

Technical Handbook 5.8

262/488

• a name
• a version
• an URI that is used as a base for RDF-URIs
• a string prefix that is used as a base for configuration names
• optional rules that define which objects are part of the component

To simplify and shorten this chapter everything that can be assigned to a component will be

called an element. This includes:

• Object-concepts
• Objects
• Relation-concepts
• Attribute-concepts
• REST elements
• ViewConfig elements
• Data sources
• Mappings of data sources
• Queries
• Topic collections
• Folders
• Scripts
• Triggers
• Accessright-paramerters

Warning: The actual property-objects themselves are not to be assigned to a component.

They will be transfered along with their object(s).

Note: When exporting folders or topic collections, they will only know their elements (in-

cluding subfolders), but not what folder they are a subfolder of. Therefore, after an import,

these folders can’t be found in the folders section but instead in the TECHNICAL section via

"Registered objects" > "Folders/topic collections".

This also means that only the top folder of a hierarchy needs to be reassigned to the folders

section after import since it still knows its subfolders.

If folders or topic collections contain elements which are neither part of the component nor

exist in the target graph, they can still be exported but will produce warnings on import since

their elements can’t be found.

Note: When exporting a property that uses an index, the index itself will also be exported.

If the target graph does not have an index with the same name and configuration, it will be

created. Otherwise the imported elements will be assigned to the existing one. If the import

results in multiple indexes with the same configuration, they can bemerged in the KB options

via "Index configuration" -> "Indexes".

1.9.2.1 Configuration

Add the software component ’Custom components’ in the Admin Tool. This component adds

the required schema. Components can then be managed at:

Technical Handbook 5.8

263/488

Technical > Custom components

All defined components are listed here and new components can be created.

Note: There are additional hidden columns for this table showing the "Assignment-style" and

the "Handling of surplus elements", that can be enabled via the "Choose columns" option in

the table settings. To access the table settings you need to enable the option "Show table

column settings" in the KB settings under "Personal -> Editors". The table settings can then
be found in the top right of the table after reloading it.

A component is an object that consists of:

Con-

fig-

u-

ra-

tion

value

Description

NameThe name of the component.

De-

scrip-

tion

A short text that should describe the use or content of the componet.

Pre-

fix

A short string that can be used to identify elements of this component.

Base

URI

An URI that can be used to identify elements of this component.

Note: See the chapter ’Choosing prefix and base UIR’ for more information on valid

base URIs.

Se-

lect

el-

e-

ments

based

on

pre-

fix/URI/Relation

Boolean value. If true, elements of this component are identified by using its base-

URI and prefix.

In-

clude

de-

pen-

den-

cies

Boolean value. If true, when exporting this component, all elements, that this com-

ponent is dependent on, will be exported aswell, regardless of wether they are as-

signed to this component or not.

Technical Handbook 5.8

264/488

Han-

dling

of

sur-

plus

el-

e-

ments

Choose how elements that are part of the component in the target Graph but aren

t part of the exported file will be handled when importing this component into the

target Graph.

• Keep: Keep the surplus elements as part of the component
• Put in the bin: Remove the surplus elements from the component and save
them in the bin section of the cutom components

• Execute script: Send them to a java-script which has to be specified before the
export

• Delete: Delete the surplus elements from the graph
Note:When importing a component the settings and script of the imported compo-

nent will be used regardless of what options were chosen for the same component

in the target-graph.

Script

to

pro-

cess

sur-

plus

el-

e-

ments

The java-script which will be called with the surplus elements on import if the ’Exe-

cute script’ option was selected for the handling of surplus elements.

Keep

ad-

di-

tional

trans-

la-

tions

Boolean value. If true, don’t overwrite any additional translations that are configured

for attributetypes in the target-graph when importing this component.

Read

only

Boolean value. If true, it prevents the user from editing anything related to this

component except the component object itself. Nothing can be added or removed

from the component and its elements cannot be edited. It is however still possible

to draw relations to and from elements of the component. It is also still possible,

although not recommended, to manually add the base-URI or prefix to an unrelated

topic making it a part of the component. This only allows you to add the element in

one way though since after that it is write protected.

De-

ac-

ti-

vate

’Read

only’

af-

ter

im-

port

Boolean value. If true, the ’Read only’ attribute of this component will be set to false

after being imported.

Technical Handbook 5.8

265/488

At-

tribute

for

iden-

ti-

fi-

ca-

tion

dur-

ing

trans-

fer

Declares a userdefined attribute to be used as an identifier for elements on transfer.

Note: The attribute needs to have an uniqueness index and should be a string-

attribute.

Assignment-

style

Defines how elements are assigned to this component:

• Relation: A one-way-relation is drawn from the element to the component.
• Relation (Adjust internal name): A one-way-relation is drawn from the ele-
ment to the component. Additionally the internal name of the element will be

adjusted with the prefix where possible.

• Prefix/Base-URI: The configured prefix and base-URI are used to mark the
name, internal name and RDF-URI of the element.

Re-

quires

com-

po-

nent

Declare other components as necessary for this one to work.

Over-

writes

com-

po-

nent

Boolean value. If true, an element that is part of this component and of one that is

necessary for it, it will only belong to this component.

Ver-

sion

The version of the component consisting of major version, minor version and patch.

There are some more options to select elements to be part of a component. For more infor-

mation see ’Additional selection and configuration of specific elements’.

1.9.2.2 A minimal example

Open the Custom components area and create a new component topic. It will ask for a name,

which can be freely chosen and changed at any time and another three mandatory values:

• Prefix: A string prefix that is used to select objects that have a configuration name start-
ing with this string. It will also be used to suggest a configuration name when creating

new elements. Use "accounting" for example.

• Base URI: A URI that will be used as base for creating RDF URIs. It should end with the
prefix, e.g. "http://example.org/accounting".

• Handling of surplus elements: This specifies what happens when a component is im-

Technical Handbook 5.8

266/488

ported and the same component is already part of the graph but has elements which

are not in the import.

Now that the component is set up you can start assigning elements to it. To do so navigate

to any element you want to assign and open its context-menu. There you should see the

’Custom components’ submenu where you can choose to either assign the element directly

via the ’Assign element’ option or to open the assignment-tool and get an overview of what

elements are connected to this one and then assign any element you deem necessary for

the component. Additionally there is the option to assign the element to the last component

that was assigned to an element.

When looking at the assigned element you should see its assignment noted on the right

side of its banner region as well as the updated RDF-URI and internal name or registry key

depending on what kind of element you assigned.

1.9.2.3 Choosing prefix and base URI

Although there are no technical restrictions when specifying a prefix or a base URI, there are

a few rules that make it easier to handle custom components:

• Only use alpha-numerical characters and periods.
• Do not add a period at the end of the prefix as it is automatically used as a separator.
• Do not add a "#" at the end of the base-URI as it is automatically used as a separator.
Warning: In version 5.4 the "#" still needs to be manually added to the base URI.

• Do not use generic names that can be mistaken for built-in components, e.g. "viewcon-
fig" or "rest".

• Use a prefix that makes it obvious which component it belongs to.
• Use the prefix as the last part of the base URI, as shown in the minimal example in the
preceding chapter.

Note: An URI (unique resource identifier) is usually used to precisely locate a resource in the

internet and is thus a web address. Since our base-URI is a namespace using that concept,

it should also start with http:// or https:// followed by a domain representing your company

or project. After that should come another / and the prefix of the component. This would

lead to something like: "https://example.org/accounting" with the project being to provide

examples and the component for accounting elements.

Note: Since we are just using the URI to identify elements and their assigned component in

the graph, it does not need to actually lead to anything when looked up in a web browser.

1.9.2.4 Changing prefix and base URI

Manually changing the prefix or base URI does not carry these changes to the selected ele-

ments thus deselecting them.

You can change the prefix or base URI and update the selected elements with the new values

by pressing the edit icon in the detail-view of the component. In the custom components

section select the component and in the bottom left the specific object you want to update.

Then click the edit icon above the banner section of the component.

Technical Handbook 5.8

267/488

In the dialog you can change existing values and new ones but not remove existing ones.

Changed or new values will immediately be used to update the elements that are selected by

the edited object.

When changing the component-object itself only the elements that are selected exclusively

by said object will be affected. The elements that are also selected by sub-objects will not

be updated as the sub-objects override the component selection because of their additional

options.

Warning: If the prefix and base URI of the component and its sub-objects are the same all

objects will select all the elements and it will be impossible to automatically separate them

again.

Note: Should a problem occur during the overwriting process, the elements that were al-

ready overwritten will keep their new values while the component still has the old ones. While

this means that those elements are temporarily not part of the component it also makes it

easy to just restart the overwriting after fixing the problem to adjust the rest of the elements.

1.9.2.5 Assignment of Elements

How an element is assigned to a component depends on the assignment-style chosen for

the component.

If the chosen style is "Relation", semantic elements will be assigned by drawing a one-way-

relation from the element to the component.

There is also a variation of this style that will adjust internal names additionally to the relation

in order to prevent confusion because of no or wrong prefixes.

If the chosen style is "Prefix/Base-URI", the assignment of an element is signaled by some of

its identifing attributes:

• RDF-URI starts with the base-URI specified by the component
• Internal name starts with the prefix specified by the component
• Registry key starts with the prefix specified by the component
• Name starts with the prefix specified by the component

The name is only used by custom components for specific elements that follow naming con-

ventions like for example view-config elements.

Note: Only one of these attributes is needed to recognize the assignment, but a RDF-URI is

necessary to export elements. If no RDF-URI is set before export it will be created automati-

cally by combining the base-URI of the component and the name of the element.

Usually these attributes are edited automatically when using the provided tools to assign or

unassign elements, but they can also be adjusted manually.

Technical Handbook 5.8

268/488

The name of the component that an element belongs to is shown on the right side of its ban-

ner region. This can be deactivated in the Knowledge-Builder settings via the menu "Editors".

It’s also possible to view which elements are part of a component by clicking the right magni-

fying glass in the detail view of the component.

1.9.2.5.1 Assigning elements

For most elements, the UI displays a list of available components in form of a drop-down

field upon creation. When selecting a component, the prefix of that component is used to fill

in the name of the new element. The UI also tries to automatically select a component based

on the context. For example, when creating a subtype of a type that is part of a component,

then that component will be selected.

The UI does not force providing an internal name or registry key for new elements. When an

element is created without a registry key and a component is selected, the registry key will

be created by combining the prefix of the component and the name of the element. Internal

names are not created from scratch and only existing ones get adjusted by adding the prefix.

This can be adjusted in the settings.

After creation, single andmultiple elements can easily be assigned to a component via the con-

text menu options in the "custom components" submenu: "Assign element", "Assign to x as

well", with x being the last assigned component, or via the assignment-tool.

The context menu additionally allows you to open the current component of single elements,

to avoid having to navigate to the custom components section, and to open the assignment-

tool which is also used to assign elements but provides a lot more options and insights than

the regular assign dialog.

Note: When assigning a relation concept to a component both of its directions will be as-

signed. The custom component logic always treats the two halfs of a relation concept as one

element.

Note:When assigning an element whose RDF-URI does not match the base URI of the com-

ponent, it will get an RDF-URI-Alias using the base URI.

Additionally, there are two options which are only available for ViewConfig elements that can

be used to replace an element of the component with another external element and prevent

future updates from overwriting the replacement.

Warning: This feature should only be used as a last resort, as it is potentially very prone to

errors because of the many possible interactions with replaced elements.

Technical Handbook 5.8

269/488

1.9.2.5.2 The assignment-tool

The assignment-tool is used to get a good overview of how the elements you want to assign

are connected and what layering issues they have.

The left side provides filters for the top tree view to remove specific types of elements. It

also has special filters to only see elements that have no assignment, have an assignment

or have layering issues. Every filter shows how many unique elements of that category are

in the top tree view. When toggling off a filter the corresponding elements will be hidden,

except if there are other elements below them that shouldn’t be hidden. In that case the

node will just be greyed out as seen in the picture above. In the upper section of the filters,

thats about the types of elements, there are buttons to toggle every filter of that section on

or off.

The top middle has a tree view of the element(s) that the tool was opened on with all the el-

ements that somehow depend on that element. This does not apply to ViewConfig-elements

as it makes more sense also show things like used scripts instaed of just dependents.

Each node shows what type of element it represents, what custom component that element

is assigned to and the name of the element. If any element produces layering issues due

to its assigned component or because it is assigned to multiple components at once, the

component(s) will be highlighted in bold, red letters and a warning symbol is displayed in

front of the node. When hovering a node with a layering issue a tooltip will appear describing

the cause of the layering issue. Elements with sub-nodes that have layering issues will also

have the same icon to indicate a problem further into the tree.

Note: These tooltips are only meant to explain the current situation that causes the layering

issue, not as a prompt to add nonsensical dependencies between components to remove

these layering issues.

For better visibility instances are bundled under a special node that shows the number of

Technical Handbook 5.8

270/488

instances below it and up to 5 components that some of the different instances are assigned

to. If the setting the use instances is disabled these nodes will not exist as no instances that

are only there through their concepts will be displyed.

The bottom tree view contains all elements that the currently selected element(s) from the

top tree view are dependent on. If a selected element from above has a layering issue the

cause will be highlighted here.

Example: In the picture above you can see that the selected relation "is superior of" has a lay-

ering issues because it belongs to the "Company" component, but is dependent on the type

"Person" which is assigned to the "Musicians" component, as you can quickly see in the list of

dependencies. This means that the "Company" component is dependent on the "Musicians"

component which should not be the case which is why it is not configured and thus causes

a layering issue. As suggested on the right side, the only components that this relation can

currently be assigned to without issues are the Musicians and Works components.

On the right side is the custom component selection. By default it shows all components that

the currently seleted element(s) in the top tree view can be assigned to without causing lay-

ering issues. To see all components "Show all" can be selected. The additional components

that will then be displayed are highlighted in red. Doubleclicking a component open a new

window to edit the component.

At the bottom you can see howmany unique elements the top tree view contains, howmany

layering issues these have and the number of currently selected elements in the top tree

view. Unique elements means that if the top tree view shows two types that can both have

the same relation, that relation will be shown below both types but will only count as one

unique element.

The context menu of elements in the tree-views have the options to open a new assignment-

tool window with the selected elements as the roots and to edit a single selected element

by spawning a new window of that element. Additionally there is an option to expand and

select all sub-nodes of the selected nodes.

Note: In case of looping dependencies all sub-elements will be selected exactly once even

if not all nodes can be expanded. So after using this option on the root node(s) there will

always be one selected node for every unique element.

Once at least one element of the top tree view and a component are selected the "Assign"

button in the bottom right can be pressed which opens a list of all elements that will be

assigned to confirm the assignment. After confimation the assigning process starts and in

the end all elements that couldn’t be assigned along with the reason for the failure will be

displayed.

In both lists you can double click an Element to open and edit it.

Note: Having an assignment-tool window open while assigning an element will automatically

update that element if present. This does not work if the element is assigned by manually

editing its attributes.

Note: When changing components while having an assignment-tool open, you can press

F5 to refresh the tool. This will update the list of components, their dependencies and all

layering errors. Holding down the ’Ctrl’ key while pressing F5, will also reload the assignments

of all elements in the tool.

1.9.2.5.3 Assign with regex search

Another way to assign elements is to define a regular expression and assign all matching

elements to the selected component. This feature can be found by navigating to the desired

component in the "Custom components" area of the ’TECHNICAL’ section.

Technical Handbook 5.8

271/488

The first thing to choose here is wether to check elements by all attributes that are used

for the prefix or by their RDF-URI. Next you define the regular expression used to search for

elements to assign. This regular expression needs to contain at least one group part which

will then be replaced by what is written in the second textfield. By default this is the prefix of

the component with a dot.

Note: If the group defined in the expression is not at the beginning of the found value it will

not be assigned to the component as the prefix/base-URI will not be at the start of the value

either.

Example: Using the regular expression ∧(oldPrefix\.).* will match everything that starts with
"oldPrefix.".

1.9.2.5.4 Component suggestions

The list of available components only shows components that won’t cause layering issues for

the element and thus follows some rules to ensure that:

• Write-protected components are never suggested.
• Only components that are dependent on all components of the most direct elements
needed for this element to work (e.g. the type of an object; a relation used by a

query) that have a component will be suggested.

• Only components that are depended on by all components of the most direct elements
that need this element to work (e.g. an object of a type; a query using a relation) that

have a component will be suggested.

Technical Handbook 5.8

272/488

• If no restrictions are found, all non-write-protected components are suggested.

1.9.2.5.5 Unassigning elements

To unassign an element from its current component you can open the context-menu of the

element and under "custom components" select "Remove element".

Unassigning an element will delete its RDF URI, deregister the registry key and remove the

prefix from the normal and internal Name. Additionally, the element will be added to a "bin"

folder that is located in the TECHNICAL section in "Custom Components".

Note:When un- or re-assigning an element, it keeps its name and its internal name without

the prefix or with a new prefix. If an element is renamed and the internal name and URI

need to use the new name as well, they need to be either adjusted manually or deleted

before reassigning the element, otherwise they still use the old name.

1.9.2.5.6 The bin folder

The bin-folder is located in "TECHNICAL" -> "Custom components" -> "Removed elements".
It has two subfolders for semantic elements and registered objects.

Elements are added to their respective bin-folder in these two situations:

1. They get unassigned from their component

2. They are surplus elements after an import and the imported component has the surplus

handling option set to "Put in the bin"

There are three ways for elements to be removed from their bin-folder:

1. The element gets assigned to a component

2. The element gets restored via right-clicking it or its bin-folder and selecting the restore

option

3. The element gets removed via right-clicking it or its bin-folder and selecting a removal

option that applies to it

Restoring an element will set its internal name and RDF-URI or its registry key to the value

they had when the element was put in its bin folder.

It is possible to see the references to the element before it was removed from its component

via its context-menu.

Note: If the component that the element was unassigned from has changed its prefix or

base-URI before the element is restored, the changes will not apply to the restored element

which will still have the exact values from when it was unassigned.

Warning: Danger of loss of data.

Unlike schema elements such as object types or property types, registered objects will be

deregistered on removing their assignment. Deregistration leads to deletion if the object is

not located in at least one folder.

Thus, removing registered objects from the bin folder will most often delete them.

• Accidentally deleted elements cannot be restored. In that case the elements must be
recreated.

• References to the registry key of deleted objects will not work anymore and must be

Technical Handbook 5.8

273/488

fixed manually.

-> To prevent accidental deletion, make sure that such objects are registered or that they at
least are located in some different folder.

1.9.2.5.7 Finding layering issues

Apart from looking at the assignment-tool there is another way to quickly find all layering

issues of a component.

By choosing a component and clicking the "show dependencies" button under "TECHNICAL"

> "Custom components", on the left you get a lists of all components that the analyzed one
is dependent on.

Highlighted components are not declared as a dependency, but still have elements that the

analyzed component needs, thus causing a layering issue.

When clicking "Show referenced components" on the right, another list will be shown. This

list contains components with a connection to the analyzed one, that does not enforce a

specific dependency direction. Only components without a registered dependency in any

direction to the analyzed one will be shown here.

Technical Handbook 5.8

274/488

The components in this list will all be highlighted, as they all cause a layering issue.

Warning: If the component to analyze contains a lot of objects, the analysis of the right list

may take some time.

Both lists have the same context-menu with the following options:

• Open graph editor: Opens the graph editor on all elements connecting the selected
component with the analyzed one. This also happens when double-clicking a compo-

nent. This will not close the window.

• Show dependencies: Opens this window for the selected component.
• Register dependency: Draws the ’Requires component’ relation from the analyzed

component to the selected one.

• Refresh list: Refreshes the list by analyzing the component again. This only analyzes
what is necessary for the selected list. Presing F5 will refresh both lists, unless the right

one is not shown, in which case only the left one is refreshed.

Warning: Refreshing a list takes as long as it did when opening them the first time.

1.9.2.5.8 Changing the assignment-style

There are two ways to change the assignment-style of a component:

1. You can just directly change the configuration of the component. From that point on

all elements will use the chosen style for assignment. Previously assigned elements

however are not changed by this.

2. You can use the tool acccessed by clicking the "Tag" icon at the component, as shown

below. In the dialog that opens, you can choose which assignment-style the component

should use from now on. This method will also adjust all assigned elements of the

component to use the new assignment style. Additionally the dialog offers the option

to remove all previously used means of assignment (the assignment-relation and RDF-

URI-aliases).

Technical Handbook 5.8

275/488

1.9.2.6 Access Rights and Trigger Definitions

Component-specific rules for access rights or triggers can be defined directly for the respec-

tive component. The two attributes "Access rights" and "Trigger" at the component definition

object are used for this purpose.

Rules defined here are automatically inserted into the rights or trigger decision tree. User

component-specific rules are inserted after the system component-specific rules and before

the general user-defined rules. Within the user component-specific rules, the ordering is

determined by the component dependency.

Attention: Make sure that all registered objects referenced by component-specific rules are

either assigned directly to the same component or to one of the components in the depen-

dency chain.

1.9.2.7 Additional selection and configuration of specific elements

By default, the prefix and base URI define which objects are selected when determining the

contents of the component. This default can be turned off by deselecting the option "Select

elements based on prefix/URI".

Note: Using the "assign" function after disabling the selection via prefix and URI will still add

the prefix and base URI to the element but without recognizing it as part of the component.

Even after disabling that it is still possible to add elements of the component and even give

them special configurations. This can be achieved by using the left part of the detail-view of

a component to add the following sub-objects:

• Selection of semantic elements
• Selection of registered objects

These objects have options to select and configure elements separately from the component.

The configurations of these objects only apply to elements that are selected by the respective

objects.

Apart from those configurations there are no differences between elements selected by the

component itself or by these sub-objects. They are all part of the component and are pre-

sented and exported as one set.

If an element is assigned via the option in its context menu, the prefix and base URI of the

component itself and not the ones configured in these sub-objects are used.

Technical Handbook 5.8

276/488

1.9.2.7.1 Selection of semantic elements

This sub-object can select elements using a prefix, base URI or query to be part of the com-

ponent. Using a query will select the elements without changing them (e.g. no specific URI

or internal Name needed).

Configura-

tion value

Description

Include de-

pendencies

Boolean value. If true, required elements of selected elements are selected

as well. This is limited to certain built-in dependencies, e.g. selecting a

ViewConfig table also selects its table columns.

Select all

instances of

component

types

Boolean value. If true, all elements of selected types are selected, too.

Prefix Optional prefix; used to select elements for this object. If not set, the prefix

of the component itself will be used.

Select by in-

ternal name

Boolean value. If true, elements are selected if their internal name match

the prefix. Overrides the choice made in the component object itself.

Base URI Optional URI used to select elements for this object. If not set, the base URI

of the component itself will be used.

Select by

RDF URI

Boolean value. If true, elements are selected if their RDF-URI match the

base URI. Overrides the choice made in the component object itself.

Query for

semantic

elements

A query that defines which additional semantic elements should be se-

lected.

If the selection via internal name or RDF-URI is enabled without specifying a prefix or base-

URI respectively, they will use the prefix and base-URI provided by the component-object

itself. Doing so means that the additional options from these sub-objects will apply to all

elements selected by the component-object itself since they will also be selected by this sub-

object.

1.9.2.7.2 Selection of registered objects

This sub-object can select elements using a prefix and restrict in which registries will be

searched.

Con-

figu-

ration

value

Description

Technical Handbook 5.8

277/488

Include

depen-

den-

cies

Boolean value. If true, elements that are required by selected elements are se-

lected as well.

Examples: Scripts referencing queries; queries containing query macros

Prefix Optional prefix used to select elements for this object. If not set, the prefix of

the component itself will be used.

Covers

reg-

istry

Selects which registry types these configurations apply for. If none are selected,

they apply for all registry elements that are part of the component.

If no prefix is specified, then the prefix of the component-object itself will be used. Doing so

means that the additional options from these sub-objects will apply to all elements selected

by the component-object itself since they will also be selected by the sub-object.

1.9.2.8 Adding custom dependencies of elements

Using the dependency-definement-tool you can designate any relation to be a dependency-

relation. These relations will tell the custom components that their sources are dependent on

their respective targets and will be used to, for example, build the tree of the assignment-tool

or find possible components for elements.

The tool can be opened by clicking the relation icon in the Custom components section under

TECHNICAL.

Technical Handbook 5.8

278/488

On the left is a table of all relations that have been designated as a dependecy-relation along

with the component they are assigned to. The table is sorted alphabetically by components

and then the name of the relations.

If the table contains a relation and its inverse relation their names will be highlighted in

bold, red letters. Additionally, if a relation is assigned to more then one component, those

components will also be highlighted in bold, red letters.

The context-menu of table-rows allows you to open new windows to edit the relation or the

component as well as open an assignment-tool on the relation. Double-clicking will also open

a new window to edit the relation.

To the right are filters for every component in the graph as well as one for relations that are

not yet assigned. There is also a checkbox at the top to show every relation regardless of the

filters. At the start the only active filter will be the one of the component that was selected

when opening the tool.

At the bottom are two buttons to add new relations as dependency-relations or remove some

of the current ones. When adding a new relation the corresponding filter will automatically

be activated.

1.9.2.9 Settings

To get to the custom component settings click on the cog icon in the top right of the KB.

There are two types of settings:

• Settings regarding the appearance of custom components in the ’Personal’ tab
• Settings regarding assignment of custom components in the ’System’ tab

1.9.2.9.1 Personal settings

These settings are used to customize how custom components are shown to a user. They

are tied to that user and have no influence on other users.

• Show assignment in banner-region: If true, each element will have its assigned com-
ponent shown on the right side of its banner region.

• Show column with assignment in tables: If true, most default tables in the KB will

Technical Handbook 5.8

279/488

have an additional column containing the components assigned to the elements in the

table. Note: Regardless of the enablement of this setting, the custom component col-

umn can still be configured for individual tables by enabling the ’Show table column

settings’ option in the ’Editors’ menu of the personal settings and clicking the menu to

the top right of the chosen table. There you can choose which columns should be dis-

played. These settings override the settings to display the custom component column.

• Use instances for component calculation: If true, every time the recommended com-
ponents of an element are computed concepts of instances will take their instances into

consideration. Additionally, instances will be shown the assigment-tool. Warning: This

is disabled by default because having to go through a lot of instances can have a huge

impact on the performance, especially when opening the assignment-tool, and usually

does not change the result much.

• Show dialog to override handling of surplus elements: If true, before every import
a dialog will ask if you want to handle surplus elements differently than configured at

the component that is about to be imported. This override only applies to this specific

import and is not saved.

1.9.2.9.2 System settings

These settings are used to customize the behavior of custom components when assigning

elements. These changes are system-wide and thus effect other users.

• Add the prefix to configuration-names on assignment: If true, configuration-names
of view-configuration elements will have the prefix added when assigned to a compo-

nent.

• Create missing configuration-names on assignment: If true, the assigned compo-
nent will try to create a configuration name for its newly assigned view-configuration

element if it didn’t have one before.

• Create mising internal names on assignment: If true, the assigned component will
try to create an internal name for its newly assigned topic if it didn’t have one before.

• When assigning a mapping also assign the used data-source: If true, data-sources
will also be assigned when the mapping that uses them is assigned to a component.

• Only when the data-source is unassigned: This is a restriction for the prior setting.
If true, data-sources will only be assigned with the mapping if they are not already as-

signed to another component.

• When assigning a data-source use the registry key of the sole mapping using it as
fallback: If true, a data-source that only has one mapping using it and no way to create

a registry key other than its private id, will copy the registry key of said mapping.

• When assigning an object also assign all of its extensions: If true, assigning an object
will automatically assign all of its extension-objects to the same component.

• Not if the extensions are assigned to a different component than their core-
object: This is a restriction for the prior setting. If true, the extension-objects will only

be assigned with the core-object if they are not already assigned to another component.

1.9.2.10 Transfer

When transfering components from one graph to another, all instances of types that exist

and can be identified in both graphs will be synced as follows:

Technical Handbook 5.8

280/488

• Attributes will always be overwritten by the import.
• For relations the behavior depends on the component of the relation target.

Component of relation target Overwritten on

import

The imported component Yes

A component, that the imported one is dependent on Yes

A component, that is dependent on the imported one No

A component, that is independent of the imported one No

No component No

Note: If a concept of the component is a subconcept, its superconcept needs to be either

in the same component or in a component that is configured as a dependency of the com-

penent of the subconcept. Otherwise the subconcept will turn into an independent concept

after importing the component. The only exception to this is if the superconcept is part of a

software component, as it is currently impossible to configure the dependency of a custom

component of a software component.

1.9.2.10.1 Export

A properly configured component can be exported at any time by opening the component

object in the Knowledge-Builder and pressing the button "Export component" in the detail

editor.

Note: When exporting a component all semantic elements will be given a RDF-URI if they

don’t have one already. If the component has an ID-attribute defined, it also tries to generate

missing IDs for all semantic elements.

When clicking export you can choose between to options:

• All: Export the whole component includeing all assigned elements
• Definition: Export only the component itself and its sub-objects without any assigned
elements

Technical Handbook 5.8

281/488

Note:When choosing to only update the definition of a component, the ’Handling of surplus

elements’ attribute will have no effect, as it would apply to all elements of the component.

Before a component can be exported some conditions need to be fulfilled:

• The component needs a name.
• The component needs a prefix.
• The component needs a proper base-URI.
• The graph needs a proper base-URL (Can be set in the KB options under System -> RDF).
• The component needs to know how to handle surplus elements.
• The component cannot be part of a dependency loop.
• If the component has an ID-attribute defined, it needs to have a uniquness index, an
internal name and a RDF-URI.

Additionally there are some conditions which are not mandatory but very helpful:

• If the component has an ID-attribute defined, it should be a string attribute, as other-
wise missing IDs will not be generated on export.

• If the component has an ID-attribute defined, the attribute should be assigned to the
component.

1.9.2.10.2 Import

An exported component can be imported via the Admin Tool or via the Knowledge Builder.

Import via Admin Tool:

1. Open "System configuration" > "Components".

2. Press "Add model component" and choose "Import custom component".

3. Select the exported file or specify a file URL.

4. Choose wether to use or override the ’Handling of surplus elements’ configuration of

the component for this import.

5. Result: The imported component appears in the list of components.

Note that the import also adds the required software component "Custom components"

in case it hasn’t already been added.

The component object can be opened in the Knowledge-Builder via:

"Technical" > "Custom components"

Import via Knowledge Builder:

Note: This requires the software component "Custom components" to be added to the sys-

tem beforehand.

Technical Handbook 5.8

282/488

1. Navigate to "TECHNICAL" > "Custom components".

2. Press the import button which is the rightmost icon at the top.

3. Select the exported file directly or specify a file URL.

4. Choose wether to use or override the ’Handling of surplus elements’ configuration of

the component for this import.

Warnings after the import:

After successfully importing a component one of two messages will be shown. If there no

problems at all it will simply say ’Done’. If some Elements could not be fully reconstructed

however, you will be shown everything that may need to be fixed.

This can include things like syncing indexes or that some domains could not be removed

because they are still in use in the target-graph. Mostly it will be warnings about Elements

not being found though. These can usually be fixed by looking up the missing elements in

the source graph and assigning them to the desired component.

In this table all elements are displayed using their RDF-name as they might not exist in the

target graph and just use the import identifiers. The highlighted elements could not be found

in the target graph.

To help fix these problems, the table of warnings can be exported via the button in the bot-

tom left. It can then be read from the source graph to show the same table.

From there you can fix the problems directly at the source by editing the elements via right

clicking them. In this table the elements will also be displayed by their actual names unless

they were deleted before opening the table, in which case it will say ’Element not found’. Here

you can also hide rows that are already fixed using their context-menu.

In case there are no Elements to be edited in the table you might be able to find the ID of

relevant elements in the description on the right. These IDs can be looked up in the KB by

clicking on the menu in the top right selecting "Administrator" and clicking "Lookup semantic

element with ID".

Technical Handbook 5.8

283/488

1.9.2.10.3 Removing an imported component

An imported component can be removed from within the Knowledge Builder by selecting the

component and clicking the right "Delete" icon in the detail view of the component.

When deleting a component you can choose wether to only delete the component and its

sub-objects for additional selection or the entire component including all assigned elements

(semantic elements, queries, etc.).

Note: Any additional property-concepts which are defined exclusively for elements that will

be removed will also be deleted as they cannot exist without a defined domain.

Warning: If you try to remove a component like other objects via its context-menu or the

buttons above the table it will only remove the component-object and its sub-objects without

the assigned elements.

1.9.2.11 Commandline commands

The Batch-tool provides the following commands for custom components:

Technical Handbook 5.8

284/488

Com-

mand

Pa-

ram-

eter

Value Op-

tional

Import-

Custom-

Compo-

nent

file filename of the component to import No

sur-

plusHan-

dling

’keep’, ’bin’ or ’delete’ to override the ’Handling of surplus ele-

ments’ configuration of the component to import

Yes

Export-

Custom-

Compo-

nent

file filename for the exported component No

uri the base-URI of the component to export No

1.10 External Index

In contrast to internal indexing, external indexing involves transferring data from the knowl-

edge graph to a third-party system so that its features can be used in the search. The tools

for mapping data sources are used to transfer the data. Triggers are used to update the ex-

ternal data, and specialized implementations are available for the third-party system for the

search functionality.

1.10.1 Application Areas

• Realization of functions (aggregation, linguistics, path algorithms, etc.), which are not
offered by i-views.

• Acceleration of the search, result display and faceting (especially for large data volumes)
• Decoupling in the architecture of the application (e.g. UI directly on external index)
• "Overhang" data - i.e. there are more objects in the external index than are known to
the K.Graph

• Coupling/data exchange with other systems

1.10.2 Export Mapping

2 Admin Tool

You can use the Admin tool to create new Knowledge Graphs, manage all Knowledge Graphs

of a mediator and configure individual Knowledge Graphs.

Technical Handbook 5.8

285/488

2.1 Admin tool configuration

Like the Knowledge Builder, the admin tool can be startet with English or German user in-

terface (UI). The preset UI language ist German. To start the admin tool with English UI, a

configuration needs to be done using the selection dialog or an ini file. The language selec-

tion dialog is available via the start dialog:

Note: If a new Knowledge Graph is created using the admin tool, the system attributes and

system relations are created in the same language as the admin tool has been started with.

Besides setting the UI language of the admin tool using the selection dialog, setting the UI

language of the (initial) default UI language can be set using the ini file.

The content of the ini file "admin.ini" for starting the admin tool with English UI is as follows:

[Default]
language=eng

Please obey that without further configuration, the ini file needs to be located in the same

directory as the admin tool itself to take effect.

2.2 Launch window

After the Admin tool (Windows: admin.exe, Mac OS: admin, Linux: admin-64.im) has started,

the Start window appears.

Technical Handbook 5.8

286/488

2.2.1 Server

The URL of the server is entered in the free text field Server. (If no protocol is specified, the

protocol cnp:// is used). Valid URLs use one of the protocols [cnp://,cnps://,http:// or https://]

followed by [computer name or IP address]:[Port number]. This format corresponds to the in-

terface setting on the mediator.

If the mediator that is used to administrate the Knowledge Graphs is running on the same

computer as the Admin tool, it can also be addressed using the computer name localhost.

If the field remains blank, then the Knowledge Graphs are accessed which are in the direct

subfolder volumes relative to the position of the Admin tool. No mediator is required for this

type of access.

Entries entered once in the free text field are saved. The ... button allows them to be selected

from a list in a separate window.

The Administrate button is used to access the server administration, for which authenti-

cation using the server password is required.

2.2.2 Knowledge Graph

The Knowledge Graph that is to be administrated is specified in the free text field Knowledge

Graph.

Entries entered once in the free text field are saved. The ... button allows them to be selected

from a list in a separate window. To display all Knowledge Graphs, the user may be prompted

to enter the server password.

2.2.3 Administrate, New and Start

Administrate is used to access the server administration, for which authentication using

the server password is required.

New forwards to Knowledge Graph generation.

Start forwards to the individual graph administration. The entries user name and password

are used for this for logging in with an administrator account.

2.2.4 About

You can use the About button to retrieve version-specific information in a separate window

via the Admin tool.

Technical Handbook 5.8

287/488

Specifically, you can retrieve:

• The version number of the Admin tool (Build),
• The publication status of the Admin tool (Release state),
• The maximum system memory in bytes that can be used by the Admin tool (Memory
limit),

• The version number and the digital finger print of the execution environment used by
the Admin tool (VM version),

• The language setting active in the operating system (Locale),
• The fonts provided in the Admin tool (Fonts),
• The Knowledge Graph components including version numbers supplied with the Admin
tool (software components) and

• The small talk packages including version number used in the Admin tool (Packages).

Information on the Knowledge Graph version and volume information is not decisive here.

The information is output in an invisible text field, which has a context menu that can be

activated by right-clicking:

• Copy: copies the selected text area to the clipboard of the operating system.
• Find: allows a string to be input in a separate window, and its next occurrence in accor-
dance with the read direction in relation to the position of the cursor set by clicking the

mouse. The query is case-sensitive.

• Find Again: searches for the selected text area and finds its next occurrence in accord-
ing to the read direction.

• Select All: selects all the text. Alternatively, the mouse pointer can be used to mark any
text segment.

The Copy button copies all information to the clipboard of the operating system.

The Copy RSA key button copies the unique key for each compiled Admin tool to the clip-

board of the operating system. This key can be entered into the initialization file of amediator

(default file name mediator.ini) and thus restricts this mediator s access via an Admin tool to

Admin tools with this specific key.

The OK button enables you to return to the start window.

2.3 Create a new Knowledge Graph

A new Knowledge Graph is created via a separate Knowledge Graph creation window. It

can be reached via theNew button on the start screen. Any inputs in the Server and Knowl-

edge Graph free text fields are ignored.

Technical Handbook 5.8

288/488

2.3.1 Server

The name or the IP address of the computer is specified in the free text field Server on which

the mediator is running, and which should be used to create the new Knowledge Graph. If

this cannot be reached using the default port, then a correct port number must also be

named. The input form in this case is [Computer name or IP address]:[Port number].

If the mediator that should be used to create the new Knowledge Graph is running on the

same computer as the Admin tool, it can also be addressed using the computer name local-

host.

If the field remains blank, the Knowledge Graph is generated in the Volumes subfolder in

direct relation to the position of the Admin tool.

2.3.2 New Knowledge Graph

The name of the Knowledge Graph is specified in the free text field New Knowledge Graph.

The characters allowed for this purpose are specified by the file system of the operating

system on which the Knowledge Graph is to be stored. To ensure that the data can also be

stored in different file systems, the following applies:

• 64 characters maximum
• No blank spaces at the start or end
• Characters permitted: upper and lower scale Latin letters, numbers, spaces !@#$%&’()+-
.[]∧_‘{}∼Œœ and ASCII characters 160-255

• The following character sequences are not allowed: AUX, CON, NUL, PRN as well as
COM0-COM9 and LPT0-LPT9

A name must be specified.

The name can subsequently be changed only during copy processes of the Knowledge Graph

or by changing file and directory names. If you make a change, keep in mind that the name

of the Knowledge Graph might be used in initialization files and that the license might have

been adapted to this.

Technical Handbook 5.8

289/488

2.3.3 Server password

The mediator supports authentication via a password. If a password has been set for the

mediator that will be used to create the new Knowledge Graph, that password must be en-

tered in the Password free text field, which is located between the New Knowledge Graph

and License fields. If no password has been assigned, the free text field must remain empty.

2.3.4 License

A Knowledge Graph must have a valid license so that Knowledge Builder and other software

components (with the exception of the Admin tool) can work with it. You can use the ...

button to access the file system of the operating system in order to load a license key (file

name: [License name].key).

2.3.5 User name

The name of the first user registered in the Knowledge Graph is specified in the User name

free text field. The type and quantity of permitted characters is not restricted.The Adminis-

trator default setting is simply a suggestion. This field must not remain empty.

The name can be changed later on in the Admin tool or the Knowledge Builder. The user

created in this way automatically has administrator rights.

2.3.6 Password (user)

In the Password free text field, you can enter a password for the first user registered in the

Knowledge Graph. This password will be required later on when this user attempts to log in

to the Knowledge Builder or the Admin tool for the Knowledge Graph.

2.3.7 Ok and Cancel

The OK button generates the Knowledge Graph, factoring in the data entered. The Cancel

button cancels the process. In both cases, the system returns to the start screen.

2.4 Server administration

The overall Knowledge Graph administration allows the administration of all Knowledge

Graphs of a mediator, or the local subfolder volumes respectively. It can be reached via the

Administrate button on the start screen. A corresponding entry in the server field of the

start screen is necessary for this. Any entries in the Knowledge Graph of the start screen

are ignored. If the Knowledge Graphs to be administrated are addressed using a mediator,

the correct mediator password must also be specified in a separate window.

Technical Handbook 5.8

290/488

The overall graph administration window is comprised of a graph overview in the form

of a table, amessage field and amenu line.

2.4.1 Graph overview

The graph overview in the form of a table provides details about

• the name (volume)
• the number of users currently active (clients),
• the date and time of the last backup (last backup) and
• the last status message (status) of the respective Knowledge Graph.

The individual columns can be sorted by clicking on the head of the column.

The data are only updated when triggering operations, and are therefore not always up-to-

date. A manual update can be forced at any time using the menu item Server –> Update.

2.4.2 Message field

The Message field outputs all status reports for all Knowledge Graphs. Status reports are

created when activities are triggered in the Admin tool. They are lost when the Admin tool is

closed. To prevent this, they can be exported via the menu option File –> Administration
log. TheMessage field can be edited, but changes are ignored during export.

2.4.3 Menu line

Themenu line consists of the following menu tabs:

Technical Handbook 5.8

291/488

2.4.3.1 File

Save administration log saves all entries in the message window in a text file (default file

name: admin.log). You can freely choose the name and storage location in a saving dialog.

This operation requires the Admin tool to be connected to a mediator.

Log off closes server administration and opens the log-in window again.

Exit closes server administration

2.4.3.2 Server

Update reloads the data collected in the graph overview in the overall graph administra-

tion window.

Re-import ini file makes the server import its ini file again. Here, not all options can be

updated during operation. The server outputs a message about updated options.

Download log generates a copy of the mediator log file usually stored in the folder of the

connected mediator (default file name: mediator.log). You can freely choose the name and

storage location of the file in a saving dialog. The mediator log file keeps a log of all the

mediator s activities from its first commissioning.

Server connections shows the numbers and IP addresses of all software components (ex-

cept blob service) currently registered in Knowledge Graphs via the mediator in themessage

field and groups them according to Knowledge Graphs. The number is generated sequen-

tially by the mediator and re-assigned whenever a new software component registers.

2.4.3.3 Transfer

Download volume creates a copy of the Knowledge Graph selected in the graph overview

and saves it locally in the volumes subfolder that is located relative to the position of the

Admin tool. A new name can be assigned to this copy in a separately appearing free text

field.

Copy volume creates a copy of the Knowledge Graph selected in the graph overview and

saves it in the same folder as the original Knowledge Graph. A new name must be assigned

to this copy in a separately appearing free text field.

Upload volume creates a copy of a selected local Knowledge Graph and saves it in the vol-

umes subfolder in the location relative to the connected mediator. A new name can be as-

signed to this copy in a separately appearing free text field. The local Knowledge Graph,

which must be stored in the volumes subfolder that is relative to the position of the Admin

tool, is selected in a separate selection window.

Replace volume creates a copy of the selected local Knowledge Graph and uses it to over-

write the Knowledge Graph selected in the graph overview. In the process, the copy is given

the name of the Knowledge Graph it has replaced. The local Knowledge Graph, which must

be stored in the volumes subfolder that is relative to the position of the Admin tool, is selected

in a separate selection window.

As a result of the copy processes initiated by transfer operations, the block allocation of the

clusters and blobs within the Knowledge Graph copies is redefined, and their space con-

sumption is optimized in the process. The resulting compression effect is identical to the one

achieved by the operationManage -> Compress volume.

With the exception of the Copy volume operation, all these operations require the Admin

tool to be connected to a mediator.

Technical Handbook 5.8

292/488

2.4.3.4 Administrate

Open Admin tool logs on to the selected volume with the Admin tool. No authentication in

the volume is required - mediator authentication is sufficient.

This makes it possible to access the user management of the volume if the administrator

password has been lost.

Create backup creates a backup of the Knowledge Graph selected in the Knowledge Graph

overview and saves it in the backup folder, which lies in a parallel position relative to the

position of this Knowledge Graph. There a separate subfolder is created for each backup; its

name contains the time, precise to the second, at which this copy was created.Every backup

is a full copy of the original Knowledge Graph.

Before the backup is created, a separate window asks whether the user wants to wait until

the copy process is complete. If applicable, further use of the Admin tool is blocked until

this time. Otherwise the copy process starts in the background, and there is no message

regarding the process or completion of the copy process.

Restore backup creates a copy of a selected backup and saves it in the same folder as the

Knowledge Graphs shown in the Knowledge Graph overview. A new name must be as-

signed to this copy in a separately appearing free text field. To select the backup, which

must be stored in a subfolder of the backup folder, which in turn is parallel to the position

of the Knowledge Graphs displayed in the Knowledge Graph overview, two separate selec-

tion windows must be navigated: in the first, the Knowledge Graph must be selected; in the

second, the version must be selected from a list sorted by creation date.

Delete backup deletes a selected backup. To select this backup, which must be stored in

a subfolder of the backup folder, which in turn is parallel to the position of the Knowledge

Graphs displayed in the Knowledge Graph overview, two separate selection windows must

be navigated: in the first, the Knowledge Graph must be selected; in the second, the version

must be selected from a list sorted by creation date.

The block assignment of clusters and blobs within the original Knowledge Graph is not mod-

ified when a Knowledge Graph copy is created. The copy process initiated by the backup

operations therefore creates no compression effect.

Delete volume deletes the Knowledge Graph selected in the Knowledge Graph overview.

Compress volume reduces the amount of space required by the Knowledge Graph selected

in the Knowledge Graph overview. This is done by removing unused interior blocks. The

copying processes for clusters and blobs first move all unused blocks to the file end and then

release them in the file system of the operating system.

Update volume storage updates the version of the block file system of the Knowledge

Graph selected in the Knowledge Graph overview. If the Knowledge Graph is addressed

via a mediator, the version it contains is used; otherwise, the version supplied in the Admin

tool is used. The updatemakes it possible to save index structures more quickly. It is possible

for Knowledge Graphs whose i-views core component is older than 4.2.

2.4.3.5 Garbage collection

Garbage collection is a procedure that deletes objects that are no longer referenced (accord-

ing to a programming terminology reading) from the Knowledge Graph and thereby mini-

mizes the memory usage of the Knowledge Graph. Use of the garbage collection requires

that the Knowledge Graph that is to be cleaned up is activated via a mediator.

Start launches a new garbage collection for the Knowledge Graph selected in the Knowledge

Graph overview or continues a paused garbage collection. No confirmation is sent when the

Technical Handbook 5.8

293/488

process is completed. You can determine its progress via the Statusmenu option.

Pause interrupts the execution of the active garbage collection for the Knowledge Graph

selected in the Knowledge Graph overview.

Stop terminates the execution of the active garbage collection for the Knowledge Graph se-

lected in the Knowledge Graph overview.

Status writes the current status of the garbage collection for the Knowledge Graph selected

in the Knowledge Graph overview to the status column of the Knowledge Graph overview

and to themessage field. If garbage collection is active, feedback on its progress is provided

in percent.

2.5 Individual Knowledge Graph administration

Individual Knowledge Graph administration allows you to manage an individual Knowledge

Graph. It can be reached via the Start button on the start screen. This requires the corre-

sponding entries in the fields Server, Knowledge Graph, User and Password of the start

screen.

2.5.1 User authentication

To access the Knowledge Graph administration window the user needs to log on with

administrator rights.

If you no longer have access to the Knowledge Graph, you can access the Knowlede Graph

through authentication on the server by logging on to the server administration.

Technical Handbook 5.8

294/488

2.5.2 Individual Knowledge Graph administration window

The Knowledge Graph administration window has a menu list with a multilevel structure

on the left, and an operation window on the right. The content of the operation window

depends on the menu option selected in the menu list.

The Back button returns you to the start window.

The Exit button closes the Admin tool.

If the Knowledge Graph to be administrated is addressed without a mediator, other users

cannot access the Knowledge Graph via the Knowledge Builder or another instance of the

Admin tool for as long as the Knowledge Graph administration window is open.

Technical Handbook 5.8

295/488

2.5.2.1 Manage the data

Create backup creates a backup of the Knowledge Graph and saves it (on the server) in

the backup folder, which lies in a parallel position relative to the position of this Knowledge

Graph. There a separate subfolder is created for each backup; its name contains the time,

precise to the second, at which this copy was created.Every backup is a full copy of the original

Knowledge Graph.

Before the backup is created, a separate window asks whether the user wants to wait until

the copy process is complete. If applicable, further use of the Admin tool is blocked until

this time. Otherwise the copy process starts in the background, and there is no message

regarding the process or completion of the copy process.

Restore backup replaces the current Knowledge Graph with a backup (afterwards you are

logged off automatically). The backup is selected according to the time of the relevant

backup.

Delete backup deletes an individual backup of this Knowledge Graph.

The block assignment of clusters and blobs within the original Knowledge Graph is not mod-

ified when a Knowledge Graph copy is created. The copy process initiated by the backup

operations therefore creates no compression effect.

Download creates a copy of the Knowledge Graph and saves it locally in the volumes sub-

folder that is located relative to the position of the Admin tool. A new name can be assigned

to this copy in a separately appearing free text field.

Upload volume transfers a locally stored Knowledge Graph and replaces the current Knowl-

edge Graph with this Knowledge Graph (afterwards you are logged off automatically)

2.5.2.2 Information

2.5.2.2.1 Jobclient

In order to relieve the workload on the Knowledge Builder for specific, processor-intensive

processes such as indexing, and querying Knowledge Graphs and executing scripts, some

of these processes can be optionally performed by Job-Clients while others are exclusively

performed as jobs by Job-Clients (a software service). To do so, the user interface of the

Knowledge Builder or a script must be used to trigger a job, or the conditions for triggering

it must be defined. Moreover, at least one Job-Client must be configured and started which

can perform jobs of this job type (job pool). The Admin tool largely functions as an observer

in this case. Jobs not completed appear in the Knowledge Builder under the entry Tasks in

the Technology category. In order to use the Admin tool to manage Job-Clients, the Admin

tool must be connected to a mediator.

Technical Handbook 5.8

296/488

The Job-Clients overview table shows the following for each job-client that is currently run-

ning:

• its name in the format [Job-Client-Name]@[Mediator-Name] (name),
• its job-client number (ID),
• its IP address (IP),
• the name of the mediator connected to it (server),
• the process number assigned by the operating system (process),
• the job types assigned to it (pool),
• its work status (status) and
• the number of jobs it has completed (completed).

The Job-Client number is generated sequentially by the mediator and a new number is as-

signed with each new log-in. The Job-Client name and the job types assigned to the Job-Client

are defined in the initialization file for the respective Job-Client (default file name: jobclient.ini)

under the key name or the key jobPools respectively. Each job type of a Job-Client is shown

in a row of its own in the Job-Client overview, so that a Job-Client regularly takes up several

rows.

The individual columns of the Job-Clients overview can be sorted by clicking on the head of

the column. Right-clicking a row also opens a context menu:

• Display information displays all data listed in the selected row, with the exception of
the job type and the completed number of jobs, in a new window. Added are

– the date and time of the last time the Job-Client was started (startUpTime),

– the maximum working memory capacity available for use by it in bytes (max Mem-

ory),

– the name of its log file (logFileName) and

Technical Handbook 5.8

297/488

– its specific name, under which it can be forced to shut down (a concatenation of

the string “jobclient” and the Job-Client number) (shutDownString).

• The data there can be copied to the clipboard of the operating system (Copy to clip-
board button) or be exported to any location as a text file that can be given any name

using a saving dialog (Save button).

• The operation triggered using the menu item Display information can, alternatively,
be performed by double-clicking a row in the Job-Clients overview.

• Remove Job-Client ends the Job-Client selected in the Job-Clients overview.
• Remove all Job-Clients ends all Job-Clients listed in the Job-Clients overview.

The job pools overview in the form of a table lists all job types that are assigned to at least

one Job-Client in the Job-Clients overview. For each job type,

• its name (name),
• its technical name used in the Job-Client s initialization file (JobPool),
• the number of uncompleted jobs of this job type (ToDo),
• the number of failed jobs of this job type (failed) and
• the number of Job-Clients available to it (Job-Clients)

are named.

The individual columns of the job pools overview can be sorted by clicking on the head of

the column. Right-clicking a Job-Client also opens a context menu:

• Empty job pool deletes all uncompleted and failed jobs of the job type selected in the
job pools overview. This operation is only possible when no Job-Client is running.

• Configure error messages to ignore allows specific error messages to be blocked
when executing jobs of the job type selected in the job pools overview. If an error

message is blocked this way, the job related to the error is not factored in when de-

termining the number of failed jobs in the job pools overview. This operation is only

possible when there are already jobs of the job type selected in the job pools overview

waiting to be processed, or that were already processed.

• The error messages to be blocked are administrated in a separate window:
– All error messages to be blocked are listed in the alphabetically sorted error mes-

sage list. An error message is blocked when its output text matches a text in the

error message list.

– + allows input of an error message to be blocked using a separate window. The

error message appears in the error message list.

– ... allows the error message selected in the error message list to be changed.

– - deletes the error message selected in the error message list.

2.5.2.2.2 Performance

Client

Technical Handbook 5.8

298/488

Record client performance data starts and ends the collection of diverse key performance

indicators that are coupled to activities by the software components connected to the Knowl-

edge Graph. These key performance indicators can be used for the performance analysis.

Interval sets the required time period in seconds until a software component sends another

data packet with key performance indicators to the Admin tool. It cannot be changed after

recording starts. The preset is 10 seconds.

The key performance indicators are output in nested list items in the key performance indi-

cator overview. Clicking on the triangle symbols to the right of the categories allows listed

subitems to be expanded and collapsed. Alternatively, this can be implemented using a con-

text menu, which can be accessed by right-clicking a list item:

• Expand opens all directly listed subitems in the list item selected.
• Expand fully opens all directly and indirectly listed subitems in the list item selected.
• Contract fully collapses all listed subitems in the list item selected.

Double-clicking on a list item allows all key performance indicators stored below it to be

shown at a glance in a separate window. There, they can be copied to the clipboard of the

operating system (Copy to clipboard button) or be exported to any location as a text file that

can be given any name using a saving dialog (Save button).

Update refreshes the key performance indicators shown in the key performance indicator

overview.

Reset deletes the key performance indicators shown in the key performance indicator

overview.

Copy to clipboard copies the key performance indicators shown in the key performance

indicator overview to the clipboard of the operating system.

Server

Technical Handbook 5.8

299/488

Check performance starts a test process that evaluates the performance of the mediator

connected. This sends four requests to the mediator, and the responses sent to the Admin

tool are evaluated. Measurements are taken of

• the times until a small file is send back (roundtrip: Blob) and
• the result of an index search request (roundtrip: RPC) and
• the average transmission rate when sending several 1MB files (throughput: Blob (1.0 MB))
and

• the average transmission rate when sending several 100 KB files (throughput: Blob
(100.0 KB)).

The test results are written to the results list provided. The individual columns of the table

can be sorted by clicking on the head of the column.

Copy to clipboard copies the test results in the results list to the clipboard of the operating

system as plain text.

2.5.2.2.3 Version information

This menu item can be used to retrieve version-specific information for the Knowledge Graph

and Admin tool.

Technical Handbook 5.8

300/488

Specifically, you can retrieve:

• The version number of the Admin tool (Build),
• The publication status of the Admin tool (Release),
• The version number of the Knowledge Graph (the Knowledge Graph version), the name
of the Knowledge Graph and the mediator used (volume information),

• The maximum system memory in bytes that can be used by the Admin tool (Memory
limit),

• The version number and the digital finger print of the execution environment used by
the Admin tool (VM version),

• The language setting active in the operating system (Locale),
• The fonts provided in the Admin tool (Fonts),
• The Knowledge Graph components installed in the Knowledge Graph and their version
numbers (software components) and

• The small talk packages including version number used in the Admin tool (Packages).

The information is output in an invisible text field, which has a context menu that can be

activated by right-clicking:

• Select All selects all the text. Alternatively, the mouse pointer can be used to mark any
text segment.

• Copy copies the selected text area to the clipboard of the operating system.

Technical Handbook 5.8

301/488

• Find Again searches for the selected text area and finds its next occurrence in according
to the read direction.

• Find allows a string to be input in a separate window, and its next occurrence in accor-
dance with the read direction in relation to the position of the cursor set by clicking the

mouse. The query is case-sensitive.

The Copy button copies all information to the clipboard of the operating system.

The Copy RSA key button copies the unique key for each compiled Admin tool to the clip-

board of the operating system. This key can be entered into the initialization file of amediator

(default file name: mediator.ini) and thus restricts this mediator s access via an Admin tool to

Admin tools with this specific key.

2.5.2.3 System configuration

2.5.2.3.1 User

The user administration compares the ones in the Knowledge Builder, with the exception

that no links between users and objects of the user-generated subgraph can be processed.

The user overview in the form of a table shows, for every user registered in the Knowledge

Graph,

• the user name (user),
• the object of the user-generated subgraph the user is linked to (linked to),
• which status the user currently has (status),
• on which date and at which time the user logged into the Knowledge Graph using the
Knowledge Builder(log-in date) if the user is still logged in, and

• which method was used to encrypt the password (password type).

The individual columns of the table can be sorted by clicking on the head of the column.

The status provides information about whether a user has administrator rights, whether a

user with administrator rights does not have a password and whether a user is logged into

the Knowledge Graph using the Knowledge Builder. Names of users with administrator rights

without a password are marked in red.

Technical Handbook 5.8

302/488

Create creates a new user. User name (obligatory) and password (optional) are defined in a

separate window.The type and quantity of permitted characters is not restricted.

Change password changes the password of the user selected in the user overview. The

new password is entered two times in two windows that appear consecutively.

Log out logs out the user selected in the user overview from the Knowledge Graph following

a security confirmation. To ensure this operation has its effect, this user must be currently

logged into the Knowledge Graph using the Knowledge Builder.

Delete deletes the user selected in the user overview following a security confirmation. At

least one user with administrator rights must remain.

Rename allows a new user name to be assigned for the user selected in the user overview

by means of a free text field in a separate window. If the free text field remains blank, no

renaming occurs.

Notification uses a free text field in a separate window to send a message to the user se-

lected in the user overview. The message is buffered in the Knowledge Graph and appears

to the user addressed in a separate window in the Knowledge Builder as soon as the user

uses it to log into the Knowledge Graph. The user cannot reply to this message.

Administrator assigns the administrator rights to the user selected in the user overview ,

or takes them away. A user must have a password to obtain administrator rights. Once the

user has administrator rights, deleting the password is then possible. At least one user must

have administrator rights.

Operations opens a new window in which the user selected in the user overview can, from

a list of operations, these being

• Create backup,
• Delete backup,
• Restore backup,
• Garbage collection,
• Copy,
• Download log,
• Download volume,
• Upload volume,
• Delete volume,

select those operations that this user may execute within the scope of individual Knowledge

Graph administration in future, without input of the mediator password. To confirm the

selection, the correct mediator password must be entered in the free text field Server pass-

word for operations.

The Operations operation can only be selected by a user with administrator rights. Its use

also requires that a mediator password has been set.

The field Administrators specifies the number of all users with administrator rights regis-

tered in the Knowledge Graph.

The field Users specifies the number of all users without administrator rights registered in

the Knowledge Graph.

The field Active specifies the number of all users currently logged into the Knowledge Graph

using the Knowledge Builder.

Technical Handbook 5.8

303/488

2.5.2.3.2 Blob storage

Attribute values of attributes with the attribute value type file (called blobs) can also be stored

in a blob store outside the Knowledge Graph. The advantage of this is that they can be

managed independently of the Knowledge Graph and can thus be managed in a different

system environment. To store blobs in a blob store, the blob store must be set up and

connected to a configured blob service (a software service).

Create generates a new blob store. Using the name format [Knowledge Graph ID]+[blob store

ID], the blob store overview appears in the text field above it.

Delete deletes the blob store selected in the blob store overview.

The numeric field Deletable files shows the number of blobs no longer required in the blob

store overview of the selected blob store. Blobs are no longer required when their respec-

tive attributes have been deleted from the Knowledge Graph or if the connection between

blob service and blob store has been removed using the Admin tool.

Delete deletes all blobs that are no longer required in the blob store selected in the blob

store overview.

You can identify a blob service in the free text field URLs. This is done by entering the net-

work address of the initialization file of the corresponding blob service (default file name:

blobservice.ini) stored under the interfaces key including the prefix http. If the blob service is

supposed to be addressed via several network addresses, these can be entered in comma-

separated form.

Alternatively, the blob service integrated in the mediator can also be addressed. In the initial-

ization file of the mediator (default file name: mediator.ini), the value truemust be set under

the key startBlobService and the free text field URLs must be left blank. The internal check-

box to the right of the free text field URLs indicates whether the integrated blob service or

an external blob service is addressed. The blob service integrated into the mediator is not

configured via the mediator initialization file but via a separate initialization file (default file

name: blobservice.ini).

Add connects the blob store selected in the blob store overview to the blob service identi-

fied via the free text field URLs. To do so, the blob service must be active. If linking is suc-

Technical Handbook 5.8

304/488

cessful, the blob store using the name format [Knowledge Graph ID]+[blob store ID] appears in

the text field below, the overview of registered blob stores.

Update updates the overview of registered blob stores. To do this, a blob store must be

selected in the blob store overview.

Remove interrupts the connection of the blob store selected in the overview of registered

blob stores to the blob service and removes the blob store from the overview. In doing so,

all blobs stored in the blob store irrevocably lose their internal references to the respective

attributes in the Knowledge Graph and can no longer be retrieved in the Knowledge Graph.

To ensure removal is successful, the blob store selected in the overview of registered blob

storesmust also be selected in the complete blob store overview.

All blobs stored via a blob service are stored in a subfolder called blobs that is located relative

to the position of the blob service. The internal assignment of every blob to its blob store and

its Knowledge Graph is established using an SQLite database.

2.5.2.3.3 Components

Knowledge Graphs consist of Knowledge Graph components. In addition to the basic func-

tions, they basically provide the Knowledge Graph with additional interfaces and user inter-

faces for user data that can be displayed in the browser (web front-ends).

Publication status components (Release States), of which there are three variants (Preview,

Release Candidate, Release) are a special subgroup of Knowledge Graph components. If such

a component is installed in the Knowledge Graph, only software components with suitable

publication statuses are able to access the Knowledge Graph.

The Software list provides an alphabetical list of all Knowledge Graph components supplied

with the Admin tool and their respective version numbers. If they need a separate license,

there is also a note as to whether this is included in the current license of the Knowledge

Technical Handbook 5.8

305/488

Graph. Publication status components do not have a version number.

If you right-click on a Knowledge Graph component, a context menu appears. Themenu item

Add standard component available there has the same functions as the button of the same

name.

Add standard component installs the Knowledge Graph component selected in the soft-

ware list in the Knowledge Graph. A separate window informs of the installation status.

Some Knowledge Graph components require other Knowledge Graph components installed

in the Knowledge Graph. Most installed Knowledge Graph components (except for publica-

tion status components) appear as separate entries in the Technical category in Knowledge

Builder. Only one publication status component can be installed at a time.

Write license template generates a template whose content is to be completed for the com-

ponent license configuration file to be used to generate the license key, and stores it at a loca-

tion of your choice via a saving dialog (default file name: [Knowledge Graph].componentLicenseTemplate.ini).

Irrespective of the configuration of the Knowledge Graph just administered, configuration

placeholders are specified for the components KEM, i-views core and Knowledge Builder. The

version number of the respective Knowledge Graph component supplied in the Admin tool

is pre-entered in every configuration placeholder.

The Knowledge Graph list alphabetically lists all Knowledge Graph components installed in

the Knowledge Graph with their respective version numbers. An installed Knowledge Graph

component for which a newer version is provided in the Admin tool is highlighted in red. The

optional Knowledge Builder component is pre-installed in a new Knowledge Graph by default.

The text fields Name and Version show the name and the three-digit version number of the

installed Knowledge Graph component selected in the Knowledge Graph list.

Add generic component adds a genericmodel component or a generic software component

to the Knowledge Graph list. The component type is selected in a separate window. Generic

components allow bundling of project-specifically created Knowledge Graph extensions and

simplify their installation (removal) and versionmonitoring via the Admin tool. The name and

version number of a generic Knowledge Graph component installed in the Knowledge Graph

can be freely assigned in the corresponding text fields.

Update (the name changes to Renew, if it can be deactivated) updates the installed Knowl-

edge Graph component selected in the Knowledge Graph to the version supplied in the

Admin tool. If the language of the currently running Admin tool differs from the language

of the Admin tool with which the Knowledge Graph component was originally installed in

the Knowledge Graph, identifiers of all elements and element types of this Knowledge Graph

component are also updated. Depending on the Knowledge Graph component, the update

of the old identifiers either adds new identifiers in the language of the Admin tool that is

currently running (the respective applicable language version is then displayed depending

on the language setting in Knowledge Builder) or replaces the old identifiers with new identi-

fiers.

Remove removes the installed Knowledge Graph component selected in the Knowledge

Graph list. If Knowledge Graph components in the installed status in Knowledge Builder

have an entry in the Technical category, they leave their own subgraph after they have been

removed, which has to be removed manually. Knowledge Graph components can only be

removed if no other Knowledge Graph components that depend on the Knowledge Graph

component to be removed are installed. The two Knowledge Graph components i-views Core

and View Configuration offer basic functions and cannot be removed.

Boost libraries 1.18.0

This configuration menu appears only if the boost libraries Knowledge Graph component is

installed.

Technical Handbook 5.8

306/488

With the exception of the blob service and the mediator, all the software components can

interpret JavaScript. In order to improve the scope and speed of interpretation of reg-

ular expressions embedded in JavaScript, it is possible to transfer their interpretation to

the Boost.Regex library. Under Windows and Linux, the library (file name in Windows:

boost_regex.dll, file name in Linux: libboost_regex.so) must be in the same directory as the

transferred software component. In Mac OS the library is integrated in the file of the trans-

ferring software component.

The boost libraries Knowledge Graph component makes it possible to ensure that access to

the Boost.Regex library is possible.

If the Boost libraries required for all incl. Admins option is selected, all software compo-

nents apart from the Admin tool can only access the Knowledge Graph if they can access the

Boost.Regex library.

If the Boost libraries required for all apart from Admins option is selected, all software

components apart from the Admin tool can only access the Knowledge Graph if they can

access the Boost.Regex library. The only ones excepted from this access lock are users with

administrator rights who access the Knowledge Graph via the Knowledge Builder.

If the Boost libraries not required, logging only option is selected, each software compo-

nent enters a corresponding warning in its respective log file, if available, if it cannot access

the Boost.Regex library during start-up. Access to the Knowledge Graph remains possible

regardless.

Knowledge portal

This configuration menu appears only if the Knowledge portal component is installed.

The Knowledge portal component enables a Knowledge Graph to operate a knowledge por-

tal (of a front-end that can be displayed via browser). The configuration of the display and

control elements of this front-end is performed in the Knowledge Builder on the relevant

element types via an editor specially provided by the Knowledge Graph component for that

purpose and with the help of the XML markup language. To make maintenance easier, and

for the logical regulation of XML documents, it is possible to install schemas in the DTD for-

mat, on the basis of which the XML documents can be validated.

In the front-end, a distinction is made between an edit view and a presentation view, each of

which have exclusive display and control elements. Separate DTD schemas are maintained

for both views. Each of the control elements explained below exists for every view.

Technical Handbook 5.8

307/488

The Select button can be used to access the file system of the operating system in order to

load a DTD schema file for the relevant view and install it in the Knowledge Graph. The default

file name for edit view DTDs is editConfig.dtd, and the default file name for presentation view

DTDs is viewConfig.dtd.

Reset deletes the DTD schema installed for the relevant view from the Knowledge Graph.

Display shows the DTD schema installed for the relevant view in a separate window. There

it can be copied to the clipboard of the operating system (Copy to clipboard button) or

exported to any location via a saving dialog as a text file with a name of your choice (Save

button). The window also features a context menu of its own, which can be opened by right-

clicking:

• Search allows a string to be input in a separate window, and next appears in accordance
with the read direction in relation to the position of the cursor set by clicking the mouse.

The query is case-sensitive.

• Mark all marks the entire text. Alternatively, the mouse pointer can be used to mark
any text segment.

• Copy copies the selected text area to the clipboard of the operating system.

Converter service

This configuration menu appears only if the print component Knowledge Graph component

is installed.

The print component allows selected Knowledge Graph elements to be integrated into an

electronic document that can be saved. To do so, a document template in the formats ODT,

DOCX or RTF must be imported into the Knowledge Graph using the Knowledge Builder and

be linked to the Knowledge Graph element to be integrated into a document. This layout of

this document template is created in an external Office program. You can use KScript and

KPath to define placeholders to be filled out by elements of the Knowledge Graph.

The conversion service is a function of the print component. If the context menu item Print is

used to generate a document in the Knowledge Builder, then along with the original format of

Technical Handbook 5.8

308/488

the imported document template, diverse other output formats can be selected into which

the document template can be converted. To ensure this conversion functions, a suitably

configured bridge (a software service) must be started and be linked to the print component,

and a version of LibreOffice or OpenOffice must be installed.

The bridge is suitably configured using its initialization file (default file name: bridge.ini). The

value jodServicemust be added in the section [KHTTPRestBridge] under the key services. More-

over, a new section [file-format-conversion]must be created and be stored there using the key

value pair sofficePath=“[File path]/soffice.exe“ with a correct path name for the location of the

LibreOffice or OpenOffice start file.

The bridge is linked to the print component using the free text fieldURL. The network address

of the bridge is entered there in the format http://[Bridge-IP-Number]:[Bridge-Port]/jodService/jodconverter/service.

The path section /jodService/jodconverter/service has historical reasons and activates the pre-

defined jodService.

Check starts a test process. The test process uses REST to send a test document to the bridge

defined using the network address and expects that a properly converted test document is

returned. The test result is output in a separate window.

The free text field Timeout is used to define how many seconds to wait for the return of the

converted test document before generating an error message. The preset is 20 seconds.

2.5.2.3.4 Licence

A Knowledge Graph must have a valid license so that Knowledge Builder and other software

components (with the exception of the Admin tool) can work with it.

Technical Handbook 5.8

309/488

The Status field specifies whether the license is currently valid or invalid. If it is invalid, a

reason is also stated. Reasons for an invalid license can be exceedance of the validity date or

maximum number of allowed registered users.

The Customer field describes the client for whom the license was issued. In addition to the

name, address and department may also be listed.

The Components field displays the content of the component license configuration file

[Knowledge Graph].componentLicenseTemplate.ini used to generate the license key. This speci-

fies

• The licensed versions of individual components (version),
• The maximum number of registered users with administrator rights (maxAdminUsers)
and

• The maximum number of registered users without administrator rights (maxUsers)

The Partner field contains the name of the partner via which the license is forwarded.

The Valid to field contains the date on which the license expires.

The Valid for Knowledge Graphs field contains a list of names of all Knowledge Graphs to

which the license is restricted. This can be entered using a regular expression.

The Valid for servers field contains a list of all IP addresses and port numbers that can be

used to reach a mediator connected to the Knowledge Graph.

The fields Partner, Valid to, Valid for Knowledge Graphs and Valid for servers can be left

blank.

Technical Handbook 5.8

310/488

All fields have a context menu that can be activated by right-clicking.

• Select All selects all the text. Alternatively, the mouse pointer can be used to mark any
text segment.

• Copy copies the selected text area to the clipboard of the operating system.
• Find Again searches for the selected text area and finds its next occurrence in according
to the read direction.

• Find allows a string to be input in a separate window, and its next occurrence in accor-
dance with the read direction in relation to the position of the cursor set by clicking the

mouse. The query is case-sensitive.

Add / Renew makes it possible to load a new license key (file name: [License name].key) via

the file system of the operating system.

2.5.2.4 Maintenance

2.5.2.4.1 Client caches

To improve performance, software components accessing the Knowledge Graph often fall

back on their own buffers (cache). These buffer the schema and configuration data of the

Knowledge Graph so they can access them more quickly if they need to use them later on.

Reset client caches deletes these buffered data. This makes sense if they are obsolete due

to changes to the schema or the configuration. This operation requires that the Knowledge

Graph is activated via a mediator.

Technical Handbook 5.8

311/488

2.5.2.4.2 Garbage Collection

Garbage collection is a procedure that deletes objects that are no longer referenced (accord-

ing to a programming terminology reading) from the Knowledge Graph and thereby mini-

mizes the memory usage of the Knowledge Graph. Use of the garbage collection requires

that the Knowledge Graph that is to be cleaned up is activated via a mediator.

Start launches a new garbage collection for the Knowledge Graph or continues a paused

garbage collection. No confirmation is sent when the process is completed. You can deter-

mine its progress via the Refreshmenu option.

Pause interrupts the execution of the active garbage collection for the Knowledge Graph.

Stop cancels the execution of the active garbage collection for the Knowledge Graph.

Refresh writes the current state of the garbage collection for the Knowledge Graph to the

neighboring text field. If garbage collection is active, feedback on its progress is provided in

percent.

2.5.2.4.3 Maintenance

Perform maintenance now checks

• the license (license)
• indexes (indexes),
• registered objects (the registry),
• rights (access rights),

Technical Handbook 5.8

312/488

• triggers (trigger) and
• installed Knowledge Graph components (active components)

for faults. Over the course of the check, the statistics for property frequencies per object

(metrics) that can be viewed using the Knowledge Builder are updated.

Any faults found are collected in a fault overview in the form of a table. For each fault,

• a short description, if relevant including the cluster ID and the frame ID (format cluster
ID/frame ID) of the faulty object (in the terminology interpreted by the program) (notifi-

cation),

• the superordinate semantic element affected by the fault (object),
• its type (type),
• the severity of the fault (priority) and
• the first point in time at which it was identified in the form of a date (date)

are output. The individual columns of the table can be sorted by clicking on the head of the

column.

Details displays all data listed in the fault overview of the selected fault in a new window.

The time of the first point in time at which it was identified and date and time of the last time

it was identified are added. The data there can be copied to the clipboard of the operating

system (Copy to clipboard button) or be exported to any location as a text file that can be

given any name using a saving dialog (Save button). The operation triggered using the De-

tails button can, alternatively, be performed by double-clicking a fault in the fault overview.

Remove deletes the fault selected in the fault overview. This does not effect the first point

in time at which the fault was identified.

2.5.2.4.4 Maintenance information

This menu option can be used to call up a chronologically orderedmaintenance history of

Technical Handbook 5.8

313/488

all essential administration processes in the Knowledge Graph since its creation. It contains

backup and transfer processes, component installations and updates, and the execution of

maintenance scripts and garbage collection, each with the time and date.

Themaintenance history has a context menu that can be activated by right-clicking:

• Select All selects all the text. Alternatively, the mouse pointer can be used to mark any
text segment.

• Copy copies the selected text area to the clipboard of the operating system.
• Find Again searches for the selected text area and finds its next occurrence in according
to the read direction.

• Find allows a string to be input in a separate window, and its next occurrence in accor-
dance with the read direction in relation to the position of the cursor set by clicking the

mouse. The query is case-sensitive.

Copy to clipboard copies the entiremaintenance history to the clipboard of the operating

system.

Add comment allows a note to be entered via a free text field in a separate window. It is given

a timestamp and added to the maintenance history. Notes added to the maintenance

history cannot be deleted.

2.5.2.4.5 Maintenance message

The Set button activates a maintenance block that prevents all users from accessing the

Technical Handbook 5.8

314/488

Knowledge Graph via the Knowledge Builder. To do this, a maintenance notification must be

written.

The maintenance notification is written in the free text fieldMaintenance notification. It is

displayed as an error message shown to all users who try to access the Knowledge Graph via

the Knowledge Builder when the maintenance block is active.

The Reset button removes the previously set maintenance block and deletes the mainte-

nance notification.

2.5.2.4.6 Maintenance script

Select maintenance script can be used to access the file system of the operating system in

order to load a maintenance script (file name: [Maintenance script].kss). Maintenance scripts

are produced on a case-specific basis in the programming language Smalltalk and permit

operations that cannot be implemented using the predefined functions of the Admin tool or

using the KEM or JS interfaces.

If the maintenance script has a description, this description is output in an invisible text field

under the Select maintenance script button after the maintenance script has been loaded.

This text field has a context menu that can be activated by right-clicking:

• Select All selects all the text. Alternatively, the mouse pointer can be used to mark any
text segment.

• Copy copies the selected text area to the clipboard of the operating system.
• Find Again searches for the selected text area and finds its next occurrence in according
to the read direction.

• Find allows a string to be input in a separate window, and its next occurrence in accor-
dance with the read direction in relation to the position of the cursor set by clicking the

mouse. The query is case-sensitive.

Execute maintenance script starts the maintenance script. A separate window tells you

when the maintenance script was executed and, depending on the script, offers additional

Technical Handbook 5.8

315/488

execution information or permits script-specific execution options.

2.5.2.5 XML import/export

2.5.2.5.1 Schema and configuration

Along with subgraphs generated by the user and imported using components (schemas with

useful data), a Knowledge Graph, by extension, is also comprised of diverse other mod-

ules (configurations) that extend, configure or work with this subgraph in functional terms.

Schemas and configurations are referred to jointly as configurations within the context of

this menu item.

Numerous configurations of a Knowledge Graph can be systematically exported and im-

ported.

Preparation of schema for object transfer

For transfer of specific semantic elements - especially instances (individual objects, attributes

and relations of respective types) - and for controlling the export and import behavior, pre-

configured XML attributes are required.

Preparation of XML attributes

To generate the XML attribute types, the "Update" option of the Admin tool adds the

Boolean attribute types to the Knowledge Graph (if they do not yet exist in it) as follows:

• XML-Schematransfer: Export all objects

Technical Handbook 5.8

316/488

• XML-Schematransfer: Export direct objects
• XML-Schematransfer: Do not overwrite

• XML-Schematransfer: Do not export type and all subtypes
• XML-Schematransfer: Do not export subtypes

These attribute types are required to select which elements and element types of the config-

uration type Knowledge Graph found in this configuration should be exported or not. To do

so, these attribute types are attached to suitable object types using the Knowledge Builder

and are given suitable attribute values.

If nothing has been configured using these attribute values, then the export applies for every

object type, but not its objects. If an object or object type is exported, all attributes and

relations directly connected to it and their attribute or relation types respectively are also

exported.

The configuration overview is a list providing an overview of all configuration types in a

Knowledge Graph that can, in principle, be transferred by means of the operations described

in the following. Able to be transferred by principle are

• individual, registered mappings of data sources (mappings of data sources)
• individual search fields configured by administrators and are user-defined (queries)
• individual data source access settings for use for mappings of data sources (data
sources)

• the print configuration (print configuration)
• the set of all modules defined within the category Determination of view configuration
(view configuration determination)

• individual index filters (index filter)
• individual index configurations (indexes)
• the LDAP authentication (LDAP)
• the license for the Knowledge Graph (license)
• individual, registered collections of semantic objects (collection of semantic elements)
• individual, registered scripts (scripts)
• the working folder (organizing folder)
• the set of all modules defined within the triggers category (Triggers)
• individual subgraphs (Knowledge Graph) and
• the set of all modules defined within the rights category (access rights).

Display

The configuration overview also manages all configurations specifically intended for ex-

port. Configurations intended for export appear as an expandable list of subitems of their

respective configuration types. If these configurations require other configurations for suc-

cessful export, these other configurations are, in turn, listed in the form of an expandable list

of subitems of the respective configurations. Configuration types without their own config-

urations are marked in italics, configuration types with their own configurations are marked

in bold and show the number of configurations assigned to them in brackets. Configuration

Technical Handbook 5.8

317/488

und configurations of each configuration type are sorted in alphabetical order respectively.

Navigation

Expanding and collapsing lists of subitems in the configuration overview is carried out by

clicking on the triangle symbols to the left of the listed items. Alternatively, this can be imple-

mented using a context menu, which can be accessed by right-clicking a list item:

• Expand opens all directly listed subitems in the list item selected.
• Expand fully opens all directly and indirectly listed subitems in the list item selected.
• Contract fully collapses all listed subitems in the list item selected.

Adding/removing configurations

Add adds a configuration of the configuration type selected there to the configuration

overview. If more than one configuration exists in the Knowledge Graph for the configura-

tion type selected, then a selection option follows in a separate window. Selection is carried

out there by either clicking individually on the respective configurations in a list, or collectively

by using the Select/deselect all button.

Remove either deletes all configurations of the configuration type selected in the configu-

ration overview or the configuration selected in the configuration overview.

Add all adds all configurations existing in the Knowledge Graph to the configuration overview

and distributes them among the respective suitable configuration types.

Maintenance scripts

The ... buttons can be used to access the file system of the operating system in order to load

a maintenance script (file name: [Maintenance script].kss). Maintenance scripts are produced

on a case-specific basis in the programming language Smalltalk and permit operations that

cannot be implemented using the predefined functions of the Admin tool or using the KEM

or JS interfaces.

If a maintenance script loads, the file name of the maintenance script selected appears in

the text field positioned to the left of the respective button. If configurations are imported

afterwards, then the maintenance script is executed. If configurations are exported after-

wards, the maintenance script is also exported and only executed when these configurations

are imported. The exact time of execution of the maintenance script in relation to the import

process depends on which of the two ... buttons was used to load it. It is either before the

import process starts, or after the import process finishes.

Export and import

Export exports the configuration selected in the configuration overview. An export as one

single archive file in the archive format tar or as individual files in a folder can be selected.

The export method is selected in a separate window:

• The free text fields File or Directory can be used to specify the name of the archive file
(file name: [Knowledge Graph].tar) or the folder respectively (no default name).

The archive file or the folder respectively is created in the same folder as the Admin

tool. Alternatively, Select can be used to open a saving dialog to define any name and

location used to save the archive file or the folder respectively.

Technical Handbook 5.8

318/488

Import imports configurations to the Knowledge Graph after confirming a prompt. An im-

port from one single archive file in the archive format tar or from individual files in a folder

can be selected. The import method is selected in a separate window:

• The free text fields File or Directory can be used to specify the name of the archive file
(file name: [Knowledge Graph].tar) or the folder respectively (no default name).

The archive file or the folder respectively is searched for in the same folder as the Admin

tool. Alternatively, Select can be used to access the file system of the operating system

to select an archive file or a folder respectively from any location.

• If the archive file or the folder to be imported respectively is selected, an overview of the
configurations it contains appears in an additional window.

This overview can be copied to the clipboard of the operating system (Copy to clipboard

button) or be exported to any location as a text file that can be given any name using a

saving dialog (Save button).

The Import button starts the import process. The window also features a context menu

of its own, which can be opened by right-clicking:

– Search allows a string to be input in a separate window, and next appears in accor-

dance with the read direction in relation to the position of the cursor set by clicking

the mouse. The query is case-sensitive.

– Mark all marks the entire text. Alternatively, the mouse pointer can be used to

mark any text segment.

– Copy copies the selected text area to the clipboard of the operating system.

Save saves the configurations currently selected in the configuration overview for this Knowl-

edge Graph as an XML file. A saving dialog is used to define a name and the location of the

XML file (default file name: instruction.xml).

Load accesses the file system of the operating system to load a previously saved selection of

configurations for this Knowledge Graph from an XML file (default file name: instruction.xml).

3 View Configuration Mapper

3.1 Introduction

View configurations can be transported into a web front-end and be displayed here in a

straightforward way using the ViewConfiguration Mapper (VCM for short). To do so, the JSON

generated in the view configuration is transported to the front-end via the REST interface in

i-views and is translated into HTML there using mustache templates.

Technical Handbook 5.8

319/488

In addition, standard interactions such as content maintenance are supported directly, and

the option is provided to execute user-specific actions in the front-end that were defined in

the view configuration using VCM.

The ViewConfiguration Mapper is a single-page application that runs in the client s browser.

It uses ractive (ractive.js.org) for an interactive and reactive application that is based on mus-

tache templates. (mustache.github.io/) .

3.2 Interaction patterns

When creating user interfaces with the i-views web GUI framework, you will have to deal with

at least two different major design aspects: static and dynamic behaviour.

Static behaviour describes the way in which elements of the Knowledge Graph are dis-

played, how they are ordered and filtered, mapped to widgets, arranged on the page and

the like. Defining static behaviour requires good domain knowledge as well as graphic de-

signer s skills.

Dynamic behaviour on the other hand side is closer to the work of a programmer as it

describes the flow of interaction, data manipulation, handling of state, refresh of display

areas and so forth. Describing dynamic behaviour often requires programming (i.e. scripting

in JavaScript) and is more difficult to capture. Usually an application developer must browse

through several scripts and configuration settings to understand the dynamic behaviour of

an application.

Interaction patterns help to cope with the task of designing the dynamics of an applica-

tion. At the same time, they help users in understanding the behaviour of an application by

providing well known mechanisms which re-appear in many other applications.

Well known patterns include for example:

• navigation bar
• shopping cart
• wizards
• simple search
• etc.

This guide is not meant to be a comprehensive list of interaction patterns - such collections

can be found in literature. Though, we would like to show how selected patterns can be

realized using the i-views web GUI.

In the first part of this guide, we present those components that take part in the dynamic

behaviour - either by controlling interaction flow or by being influenced or controlled.

In the second part we discuss application state.

In the third part we show how selected patterns can be implemented with the i-views web

GUI framework.

3.2.1 Building blocks of dynamic behavior

Technical Handbook 5.8

320/488

3.2.1.1 Panels

Panels and views are mainly elements of static behaviour. As panel contents and visibility

may change over time, panels are frequently part of dynamic application behaviour as well.

First, panel contents depend on the type of panel:

Layout panels contain other panels whereas view panels contain views - either statically or

dynamically determined.

All types of panels may carry one specific "domain model" at a given time. The domain

model may be an element of the Knowledge Graph, a list of elements, a (parametrized)

search definition, or search parameters. Panel contents (= domain model) are determined

according to one of the following cases:

Possible case Addtional option Additional option

a) Resulting

from an action

(see chapter

below)

("Show result in

panel" or action

within the same

panel)

+ e) Optional:

computed by a

script ("Script for

target model")

in addition to a) or

b)

(+) f) Optional, but not recom-

mended in the first place:

computed by a script ("Script

for context element")

in addition to e) or c)

b) Passed

through on

panel depen-

dency activation

("influences")

c) Passed through on panel activation

cascade

(see section below)

d) No action or activation

(contents may be determined inherently by

panel (sub-)configuration, e.g. ’Search’ or

’Graph’)

Alternative option

g) Optional, but not recommended in the

first place:

a configured fixed element of the knowl-

edge graph ("context element")

Panels exist in the two states: visible (or active) and invisible (or inactive). The state of a

panel can be changed by activating or deactivating the panel. This process is initially triggered

by an action (see chapter below). After that, a cascade of further activations and deactivations

is conducted depending on panel structure and configured dependencies.

Technical Handbook 5.8

321/488

The following rules apply with respect to panel activation:

• Rule A ("static activation"):
Themain window panel of the application is always active when an application starts

(for the web frontend: application = view config mapper (VCM))

• Rule B ("action activation"):
The execution location (location at which an action is triggered by a user, e. g. by

clicking on a button or onto a table row) determineswhich panel becomes activewhen

the action is executed

Based on A/B, there are subsequent activations based on these rules:

1. Influenced panels are activated (e.g. by relation "influences")

2. Panels with a specialized function (e.g. window title) are activated automatically by their

superordinate panel in the corresponding hierarchy (e.g. main panel or dialog panel)

3. Subpanels are activated

4. In the case of a panel with a changing layout:

Sister panels of the active subpanel are deactivated

5. Continue with 1. until no further panels can be activated

(an integrated cycle test prevents endless loops)

6. Make sure that all parent panels of activated panels are activated as well

Subsequent activations of step 1 - 3 pass the domain model (context) from one panel to the

next. If, for example, panel A shows the element "Mr. Meyer", then the activated subpanel B

also shows "Mr. Meyer". This default behaviour may be altered according to panel content

rules (using scripts or a fix context element; see cases e), f) or g) above).

The so-called "Activation mode" can be used to optimize the calculation of the panel con-

tents in step B (action activation) and in step 1 (influencing). This avoids the recalculation

of panel contents that are currently not displayed despite activation, because they are not

visible (e.g. a shopping basket). The available activation modes are as follows:

• The option "Refreshmodel and view" updates the panel contents only if panel is active
• The option "Refresh view only" updates the view contents (friends of Mr Miller), keeps
view state (table page 4) and domain model (Mr Miller)

• The option "Default" is the fallback setting when neither of the other options described
above were selected (update the panel contents and activate the panel)

3.2.1.2 Actions

Actions are the main driver for dynamic behaviour. They are triggered by user interaction

in the web frontend, i.e. whenever the user activates a button, menu item, or hyperlink.

Actions may change the state of the Knowledge Graph or they purely are of navigational

nature - thus changing only application states (e. g. current visibility of panels, user selections

etc.).

Technical Handbook 5.8

322/488

The action definition (= configuration of the action) comprises the direct effect of the action as

well as the changes in display contents thereafter. The action effect depends on the selected

action type, parameters, and action target (panels) which will be determined on run-time.

Changes in display contents as consequence of an action are more complicated to under-

stand. The following rules apply:

1. The panels configured as panels to be activated ("show result in panel") are activated

with the domain model returned as action result - optionally modified by a script

("script for target model") and optionally disabled by another script ("script for activa-

tion").

2. If the former rule does not apply, the panel configuration containing the action may

determine the panel to be activated ("show action results in panel"). This configura-

tion is inherited along the parent-child structure of the panels.

3. If the former two rules do not apply, the panel containing the action is activated.

4. In addition, panels to be activated or deactivated can be set by the action script using

functions "actionResult.addActivation()"and "actionResult.setCurrentPanel()"

After applying these rules, subsequent activations will be conducted according to the activa-

tion rules in the panel section above.

3.2.1.3 Scripted actions

Action configurations with user-defined action scripts offer the broadest range of possible

action behaviour.

The i-views JavaScript-API allows full access to and modification of the Knowledge Graph -

considering the user s access rights restrictions, of course. Additionally, the current state of

the application can be accessed andmodified as well as the current view, session, user, and

panel are available to the action script. The following parameters or functions are provided:

• Action: the current action is the first parameter of the action script
• View: the view is the "this" object of the action script
• Session: can be accessed by "action.session()" or as shown below in the section about
sessions

• Panel: can be accessed by "this.panelView()" - the panel is only available to the action if
the configuration option "panel contents required" is selected

3.2.1.4 Actions and views

Usually, the receiver of an action is the view the action is attached to. This is the case for all

actions that are configured as member of a menu of a view and for special actions directly

configured for the view, e.g. the “click action” of a table. When a menu is configured “stand-

alone”, e.g. as a navigation bar, all actions of the menu have their own view, which is of type

“ActionView”.

3.2.1.5 Built-in actions

Built-in actions are executed whenever no (custom) action script is present. The action type

("action type") determines what will happen on action execution and what the result domain

model of the action will look like. Built-in actions are usually specialized to specific views and

require correct parametrization.

Technical Handbook 5.8

323/488

Action type "save" deals with form data from edit views, writing data back to the Knowledge

Graph. The web frontend will automatically detect the corresponding edit view to a given

"save" action if there is only one edit view visible. If you have more than one edit view visible

at the same time, use "view roles" to link an action to a corresponding view.

Note: An action can handle only one view role, whereas a view can be related to different

view roles.

Action type "read" has the same effect as no action type and the same effect as an empty

action script - it does nothing and the result domain model is the current domain model of

the view.

Action type "select" has the same effect as action type "read" but the resulting domainmodel

is the element specified by the parameter "selectedElement" (set by the web frontend).

3.2.1.6 Transactions / Action Sequences

Actions modifying the Knowledge Graph automatically run a transaction ensuring a consis-

tent all-or-nothingmodification. However, there are situations in which changes that the user

makes to the Knowledge Graph are split into a sequence of consecutive actions - especially

when user interaction is necessary to determine further action parametrization or to abort of

the process so far.

Example: A new object needs to be created within a dialog. To allow the user aborting the

creation of the new object by pressing a cancel button of the dialog, the dialog invoking action

starts a transaction, the cancel button cancels the transaction (action type: "Cancel") and a

save button commits the transaction.

In order to encapsulate a sequence of actions into one transaction, you mark the first action

with "Transaction - begin" and the final action with "Transaction - commit".

Caution:

• Risk of data loss caused by never-ending transaction.
When actions are configured with "transaction - begin" only, a single never-ending trans-

action will be created. A never-ending transaction has the potential to grow continuously

once started, recapturing all actions since the begin of transaction, until the system first

becomes slower and then breaks down completely. Additionally, changes never will

be saved since saving is triggered at the end of a transaction only in order to keep up

consistency.

To avoid these effects, make sure to set a "transaction - commit" as soon as the se-

quence of actions is complete enough for achieving the required state.

Only set an action to "transaction - begin" if you also set a subsequent action to "trans-

action - commit".

• Risk of losing data integrity in case of repetitive transaction execution

Transactions must not be executed on elements with variable order.

The transaction history of a transaction records which action is executed on which se-

mantic element of a particular order. When executing a further action within a trans-

action, the transaction history with its fixed order of actions is repeated and the new

action is supplemented to that history.

Technical Handbook 5.8

324/488

If the order of semantic elements varies when the transaction is repeated (e. g. by cre-

ating elements by means of a script or by determining elements executing a query), this

results into a misalignment of the order of actions to their respective element of a par-

ticular order, leading to actions being processed on wrong elements.

When processing semantic elements in a transaction sequence, therefore make sure

that the order of elements keeps deterministic. To keep a deterministic order, the ele-

ments need to be sorted after a fixed property.

Example: An action A executes a query for meals. The search result is “Pudding” and “Fish”.

The action additionally creates two rating objects and links the ratings to “Pudding” and “Fish”.

The user is enabled to write a comment (attribute) on each rating. The next action B saves

the comments at the rating objects and ends the transaction.

The execution of action is as follows: A, A+B. Action A therefore is executed twice.

An important aspect is the deterministic order of found meals: since the result of a query

has no specific order, the assignment of the first comment to “Pudding” or to “Fish” happens

by coincidence. Therefore, the query result needs to be assorted first to ensure a correct

assignment of first and second rating object to the relevant meal. Only this makes it possible

to prevent the pudding from receiving the rating “Very tender, but too many fish bones“.

The transaction commit can also be brought about dynamically via the "setTransactionCom-

mit()" script function.

If the transaction is to be cancelled, you can achieve this by means of an action of the "Can-

cel" type. Cancelling means that all previous changes to the Knowledge Graph conducted

within the transaction are undone. The "setFailed()" script function can be used to dynami-

cally initiate a cancellation.

As a transaction is always coupled with the duration of a session (see below), a transaction is

cancelled automatically when the session ends in which the transaction was started.

If, for example, you open a dialog at the start of the transaction and the dialog is closed

before the transaction was completed, the transaction is cancelled automatically. This does

not apply to dialogs that are opened while a transaction is already running: opening a dialog

creates a new session on the session stack which is independent from the currently running

transaction. Dialog sequences (one dialog is closed, and another dialog is opened immedi-

ately) do not interrupt the transaction either.

Note: Only one transaction can be processed at once. A transaction within another transac-

tion is not supported.

3.2.1.7 Recall actions

Sometimes an action needs to start a sequence of actions and after the last action in the

sequence wants to come back to the original context for finalization. This mechanism can -

but does not have to - be combined with a long-running transaction as described above.

The desired behaviour can be achieved by configuring a recall script ("Script (recall)") which

is activated when calling the function "action.recallMarkedAction()" in the last action of the

sequence. The recall script is then executed with the same environment (view, action, pa-

rameters) present when the action was first executed.

The environment necessary to run a recall script is stored on the current session and will

Technical Handbook 5.8

325/488

thus be dropped on session end. The function "action.dropMarkedAction()" allows removing

the environment from the session in the case that the whole sequence of actions shall be

aborted.

3.2.1.8 Sessions

In sense of the view configuration, a session serves as temporary storage for variable values

which can be read from and written to within scripts of the view configuration. This in turn

allows representing the current state of an application.

Sessions are run-time objects, instantiated while running an i-views web application. Ses-

sions form a stack. The first session lasts the entire duration of the web session; that is

from the time the application is called until the respective browser window is closed. You can

always call up the first session by using function "$k.Session.main()".

Opening a dialog generates a new session on the stack. The closing of the dialog removes

the corresponding session from the stack again.

The activation of panels, which are marked with a "Session boundary", also generates a

new session on the stack which lasts until the panel is deactivated. The element of the new

session is set to the current element of the panel and can be used in the future by using the

"element()" function on this session.

Use the function "$k.Session.actual()" to access the top session of the stack.

Values are written to a session variable by means of "$k.Session.actual().setVariable()" and

are read from a session variable by means of "$k.Session.actual().getVariable()".

3.2.2 Application state

The application state comprises the activation states of the following:

• panels
• panel contents
• session stack
• session variables

Actions allow application designers to change application states. Unfortunately, as explicated

above, there are numerous options and parameters that influence especially panel activation

and contents.

As a result, the desired effect is often not achieved or is spoiled by unwanted side effects.

To make applications dynamic behaviour simpler to understand and maintain, it is therefore

necessary to use clear, modular building blocks keeping action effects as local as possible.

Here, the session stack together with session variables plays an important role by providing

a local, temporary context to such a building block.

System architecture considerations

Technical Handbook 5.8

326/488

There are two main players in the i-views web GUI framework: a JavaScript application run-

ning in the web browser and the i-view REST interface running at server-side.

As the REST interface is stateless by design, the application state resides completely in the

front-end (web browser).

At the same time, application logic (static and dynamic behaviour) is exclusively available in

the back-end (Knowledge Graph) and applied when calling the REST API.

As a result, all necessary application state must be provided by the front-end when calling

the REST API. Usually this is done automatically by the framework. For example, the session

stack is always being provided and is thus available to back-end scripts.

For efficiency reasons, only the state of the view an action is attached to will be provided when

the action is executed. Sometimes this is not sufficient and configuration options like "panel

contents needed" have to be set.

3.2.3 Interaction patterns and recipes

For the needed information about usage and rationals of interaction patterns for your user

interface, see ui-patterns.com first. The website describes the needed patterns, whereas the

implementation of the very solution is supplemented in here.

The following subchapters show recipes on how to implemnt the i-views specific solution of

certain patterns for user interfaces using the view configuration mapper.

3.2.3.1 Navigation bar

Similar to the visualization of an "Alternative" view, panel tabs with a navigation bar can be

used. The advantage of panel tabs with navigation bar in comparison to the alternative:

panel tabs can contain further sub panels, allowing configuration of more specific layouts as

well as using all of the panel related functions a view doesn’t come with (viewmodels, session

boundaries, interaction etc.).

In order to configure panel tabs with a navigation bar, proceed as follows:

1. Configuration of panel structure:

• Create a panel containing a menu residing on top or at the side of the screen.
• Depending on the intended layout of the navigation bar menu, select menu type "Tool
bar" for horizontal layout or "List" for vertical layout.

• Create a button for each section to be displayed.
• Create another panel of type "Switching Layout" that covers the remaining part of the
display area.

• Create a sub-panel of this panel for each section and mark each panel as "Session
boundary" (check box set to true).

2. Linking action to panel:

• Link each button (= action) to the corresponding section panel using the relation "Show
result in panel". This causes a panel to be activated when its button is pressed.

• Link each button (= action) to the panel of the menu in which the action itself is located
in. This causes an update of the button styling when the button is pressed.

Technical Handbook 5.8

327/488

3. Creating style for action:

• For a better usability, create a style "buttonActive" that gives a visual indication of the
button selection. First create the style at one action and then reuse (assign) the style to

the other actions as well.

• Add the following script at class (script) to each button:

function additionalPropertyValue(element) { var isActive = isActiveForSession($k.Session.actual(), this.getPanelsToActivate())
return isActive ? "yourButtonClass buttonActive" : "yourButtonClass"

}

function isActiveForSession(session, panelsToActivate) { var sessionBoundaryActivatedConfig = session.panelConfiguration()
var isActive = panelsToActivate.indexOf(sessionBoundaryActivatedConfig) > -1 if(!isActive && session.parent()) {

isActive = isActiveForSession(session.parent(), panelsToActivate)
}
return isActive

}

Replace "yourButtonClass" by the name of the class that is intended to be used for the

button.

4. Defining the CSS class for the style:

• For the style, add a class for the active button to the Options Resource of the REST
service of the "viewconfig" application.

To do so, use the organizer in the Knowledge Builder to navigate to "TECHNICAL">"REST".
In the "REST Service" object list on the right side, select the service with the id "viewcon-

fig". In the detail editor of the service, select "vcm/options" and edit the entry for "CSS".

Example: let’s assume a class ".navigation-button" is already in use for the buttons.

Then a further class ".navigation-button.buttonActive" is needed for styling of the active

state of the button:

.navigation-button {width: 200px;}

.navigation-button.butttonActive {background-color: red !important;}

5. Refresh interfaces of REST and VCM:

• Update REST-Service and ViewConfig and reload the web frontend (since panels have
been created).

Result: When clicking on a button, the representative panel is shown and the buttons

is styled with an active style.

3.2.3.2 Dialog (modal)

Configure a dialog panel. Make sure the panel has proper title and a menu with a button

labelled "X" to close the dialog. Check the "close panel" option for the close action. Configure

the body part of the dialog as desired. Optionally, configure a footer panel withmenu buttons

"Ok" and/or "Cancel" - both with "close panel" option checked as above.

Technical Handbook 5.8

328/488

Finally, configure an action to open the dialog. Connect the action to the dialog panel using

the relation "show result in panel". Make sure that the action result is the domain model you

want to present in the dialog.

3.2.3.3 Wizard

A wizard is used to guide the user throughout an input process that contains several steps.

The following wizard example configuration is as follows:

• An action button returns the semantic element to be edited or created and displays it
on another panel or opens a dialog. While doing so, the action begins a transaction so

that editing can be aborted anytime.

• Within the panel or dialog, each step is presented on a separate subordinate page.
• A sub configuration displays progress information and is equippedwith "Back"/"Forward"/"Save"/"Cancel"
buttons. In case of a dialog, the dialog footer panel is suitable for such a purpose.

Configure a panel of type "switching layout". Each step of the wizard is then presented

in a sub-panel of this panel. Embed the switching panel into a dialog panel or make sure

that there are no other means of navigation despite "forward/save", "back", and "cancel".

Configure a (footer) panel below the switching panel with navigation buttons "forward" and

"back".

The wizard operates with an edit view in each sub panel of the switching layout. The super-

ordinate panel (e. g. dialog panel) is activated by means of an action starting a transaction:

when the wizard is abandoned without saving ("Cancel"), the changes are aborted. Each step

initiates an intermediate save action ("Forward"/"Back") within the transaction.

Note:

• Each sub panel of the switching layout must contain an edit view. Otherwise the action
buttons won’t operate. If introductory text is needed for a step, it therefore cannot be

placed solely in a separate sub panel without edit view.

• This wizard can be used with either the buttons placed in the same panel as the edit
view or in a separate panel different from the edit view (e. g. dialog footer panel)

Register a script with the key "wizard":

$k.define([], function () {

function currentPageIndex () {
var index = $k.Session.actual().getVariable(’currentPageIndex’)

Technical Handbook 5.8

329/488

if (!index) { return 1
}
return index

}

function numberOfPages () {
var switchingConfig = $k.Session.actual().panelConfiguration()
var switchingPanel = $k.PanelConfiguration.from(switchingConfig)
return switchingPanel.subPanels().length

}

function nextPage (view) {
var currentPage = $k.PanelConfiguration.from(view.panelView().configurationElement())
var switchingPanel = currentPage.parent()
var pages = switchingPanel.subPanels()
var currentIdx = pages.indexOf(currentPage)
var nextPage = null
if (currentIdx < (pages.length-1)) {

nextPage = pages[currentIdx + 1] // index based on start value 1
$k.Session.actual().setVariable(’currentPageIndex’, currentIdx+2)

}
return nextPage

}

function previousPage (view) {
var currentPage = $k.PanelConfiguration.from(view.panelView().configurationElement())
var switchingPanel = currentPage.parent()
var pages = switchingPanel.subPanels()
var currentIdx = pages.indexOf(currentPage)
var previousPage = null
if (currentIdx > 0) { // 0-basiert

previousPage = pages[currentIdx - 1] // index based on start value 1
$k.Session.actual().setVariable(’currentPageIndex’, currentIdx)

}
return previousPage

}

return {
currentPageIndex: currentPageIndex,
numberOfPages : numberOfPages,
nextPage: nextPage,
previousPage: previousPage

}
})

This script contains the functions as follows:

"currentPageIndex()", "numberOfPages()", "nextPage(view)" and "previousPage(view)" return-

ing the current page, the number of pages, the next page and the previous page. Use this

information for the action, label, and enablement scripts of the "forward" and "backward"

buttons.

For the footer panel, add a text view for displaying the pages and a menu. At the menu, add

an action for the forward button: to save intermediate changes, select the action type "Save".

Label script for "forward" button:

Technical Handbook 5.8

330/488

function label(element) {
var text

var wizard = $k.module(’wizard’)
var currenPageIndex = wizard.currentPageIndex()
var numberOfPages = wizard.numberOfPages()

text = "Save"

if (currenPageIndex == numberOfPages) return text

text = "Forward"
return text

}

Action script for "forward" button - e. g. action type "Save" with "Script (after action)":

function postAction(element, action) {
var nextPage = $k.module(’wizard’).nextPage(this)
if (nextPage == null) {

action.setClosePanel(true)
action.setTransactionCommit(true)

} else {
action.result().activatePanelConfiguration(nextPage)

}
}

If the last step is reached (= last sub panel visible), the "forward" button acts as a save button

and commits the transaction - leading to all changes done in the dialog being saved. Com-

mitting the transaction will also save all intermittently saved changes that happend during

the transaction.

Action script for “backward” button - e. g. action type "Save" with "Script (after action)":

function postAction(element, action) {
var previousPage = $k.module(’wizard’).previousPage(this)
if (previousPage !== null) action.result().activatePanelConfiguration(previousPage)

}

Enablement script for “backward” button:

function actionEnabled(element) {
var wizard = $k.module(’wizard’)
var currenPageIndex = wizard.currentPageIndex()
return currenPageIndex > 1 // index based on start value 1

}

Add a label to the text view in the footer panel showing the current page number and total

for progress indication. Provide a label script as follows:

function label(element) {
var wizard = $k.module(’wizard’)
var currentPageIndex = wizard.currentPageIndex()
var numberOfPages = wizard.numberOfPages();

return currentPageIndex.toString() + ’ / ’ + numberOfPages.toString();
}

Configure further functionality for each step of the wizard as needed.

Technical Handbook 5.8

331/488

3.2.3.4 Transaction

Configure the first action as "transaction: begin" and the final action as "transaction: com-

mit". Every in-between action should have an alternative action allowing users to abort the

transaction. Configure abort actions with "action type: abort".

To clearly indicate the scope of the transaction use "Dialog" or "Wizard" patterns.

3.2.3.5 Guided input

Attach a menu to the property configuration for which you want to provide input guidance.

Add an action to the menu and configure the action to do whatever is necessary to initiate

the process. Configure a "Script (recall)" that will be executed after the guided process has

finished:

function customActionRecall(action, actionResult) {

this.setNewValue(actionResult.element());

actionResult.activatePanel(this.panelView());

}

In this script, the input value will be written to the property input field (function "setNew-

Value()") and the action result will be equipped with the contents of the current panel which

is necessary as we otherwise might loose other input fields values on the same panel.

Connect the action to a dialog panel or a sister switching panel using the relation "show

result in panel". Configure the targeted panel to guide through the process of input value

determination (see e.g. patterns "wizard" or "dialog" above).

The final action of the process must invoke the recall script and make sure that possible

dialog panels are closed. Additionally, the input field s value must be passed to the recall

script e.g. by setting the action result accordingly.

function customAction(action, actionResult) {

actionResult.setModel(action.selectedElement())

action.recallMarkedAction()

}

Provide the user with the ability to abort the process. The aborting action must remove the

recall action from the session:

function customAction(action, actionResult) {

action. dropMarkedAction()

}

Technical Handbook 5.8

332/488

3.2.3.6 Search and Filter

Searching for a specific element of the knowledge graph is often a complex task that has to

be supported by various user interface elements and functionalities. First, the search has to

be parametrized to the user’s needs. After initiating the search, the results are visualized in a

way that allows the user to distinguish between different elements and finally select one or

more. Optionally, further filtering of search results is needed.

In any case, the configuration of a search compoundis required, which on the one hand

defines the search configuration to be used and on the other hand brings together the states

of all the views involved, which are usually spread across several panels.

3.2.3.6.1 Parameter

Parameters are entered using form inputs. In order for the user input to be processed in

the appropriate search parameters, the form input must be configured as part of a search

compound as described in the chapter on form input.

Web applications often have a globally available search with a single parameter in a header

bar that is always visible. More complex parameterized search functionality requires more

space for the parameters and is therefore only made visible when required. In any case, it

has proven to be advisable to place the parameter form inputs on a separate panel.

3.2.3.6.2 Triggering the Search

The search process can be triggered as soon as the user has specified all the required search

parameters. If there is only one parameter, it can be triggered directly by an "Accept action"

on the form input. Otherwise, a separate button is required.

The action for triggering the search can either have the action type "Script" or no action type.

It is important that the required values from the form input are available for the parameters

when the search is triggered. To do this, the actionmust be executed on a view that is located

on the same panel as the form entries for the parameters. The action for triggering the

search must also activate the panel with the view of the search result or the panel with the

view for filtering the search result.

3.2.3.6.3 Filtering

The user can use a facet view to further narrow down the search result. To do this, the facet

view must be part of a search compound. An interaction configuration of the facet view is

not required. If the facet selection is changed, the panel is automatically recalculated with

the updated facet selection.

In order for the search result view to be adapted to the facet selection, the panel of the

facet selection must influence the panel with the view of the search result. This is of course

not necessary if both are on the same panel. For performance reasons, however, it is recom-

mended to configure separate panels.

3.2.3.6.4 Search result

Various views can be configured as output in the search compound to display the search

results:

• Table
• Graph

Technical Handbook 5.8

333/488

• Layout
• Alternative

In the case of Layout and Alternative, a "Script for domain model" is required, which dis-

tributes the elements of the search result to the subviews:

function domainModel() {
var subModels = []
try { subModels = this.domainModel().elements() } catch (error) { }
return subModels

}

3.2.3.7 Mirrored State

If the user navigates to a new panel, the views contained on it are recalculated on the basis of

an "empty" base state. If you want to start at this point with a state that the user has already

created by manipulating the views of other panels, you can configure the corresponding

views as the source and target of a "Mirror compound".

Example: Panel A is located on the main page of the application and contains a form input

F1 for a global search. Panel B contains the search result and also shows the entered search

parameter in a form input F2. If you connect F1 via the "Mirrored from" relation and F2 via

the "Mirroring from" relation with a mirror compound, the state of F1 is mirrored when F2 is

initialized. Mirroring is unidirectional, but can also be configured bidirectionally if required.

In this case the views involved are both "Mirroring" and "Mirrored".

3.2.3.8 Customized relation target dialog

The standard relation target dialog provides default functionalities:

• A list of the possible relation targets displayed by their primary name. Clicking onto a
list entry closes the dialog and creates a relation to the selected target.

• A dropdown form entry allows selection of relation target types. A "New" button offers
to create a new object of the selected type to be used as relation target.

• A "Cancel" button closes the dialog without further action.

However, it might be the case that the dialog does not fit the needs for every web frontend.

For example, the table might need to show other properties than the primary name or the

dialog offers too much functionality - e. g. creating new objects of a type by an average user

must be prohibited.

A customized relation target dialog can be created easily as follows:

1. At the property configuration for the relation, add a custom menu.

2. For the menu, select the menu type "View specific actions".

3. Add an action to the menu, select the action type "Choose relation target".

4. Create a new view role for the action.

5. In the ViewConfig Mapper tree, select the node "Dialog panels" and create a new dialog.

In the dialog, choose the template "RelationTargetDialog".

Technical Handbook 5.8

334/488

6. A follow-up dialog asks for a name which will be used to creating the configuration

names for all components of the dialog panel, enhanced by the suffix ".relationTarget-

Dialog".

7. Add the previously created view role to the dialog panel: this ensures that the action

(choosing a relation target) only takes place in the specific configuration the role is as-

signed to.

8. Adjust the ViewConfig elements (table, menu actions etc.) according to your needs. For

example, if a "New" button is not needed, remove it. If the both type selection and

"New" button are not needed, remove the whole corresponding footer panel.

Assigning a new default dialog for relation targets

The standard relation target dialog already is preconfigured as a dialog panel of the View

Configuration Mapper. It has the default view role "RelationTargetDialog" and it is displayed

when selection of a relation target dialog is initiated by clicking onto the search button "+" of

the property view.

By re-assigning the view role "RelationTargetDialog" to a customized dialog panel, this panel

can be used as default instead.

Tipp: When using a default dialog panel with the role "RelationTargetDialog", no custom

action is needed at the property edit.

3.3 Configuration

The usual procedure involves activation of the ViewConfiguration Mapper components in the

Knowledge Graph and the creation of a modification project, into which vcm is integrated.

In order to modify the look & feel, making changes in CSS alone may be sufficient. vcm

supports LESS (lesscss.org/). The templates can also be changed or supplemented for more

complicated modifications.

Grunt (gruntjs.com/) is used as the TaskRunner, and as a PackageManager Bower (bower.io/).

More detailed information and a list of the Grunt tasks is available in the README.md in the

project.

3.3.1 Frontend configuration

The configuration of the web frontend is done by means of the vcm/options resource at the

viewconfig REST service:

Technical Handbook 5.8

335/488

There are two phases for which the options can be set:

1. Before authentication

2. After authentication

By default, only phase 1 is configured. If options need to be configured for the time after

authentication (e. g. setting the frontend language depending on the user account), a further

options resource must be created and then linked via "Optionen nach Authentifizierung".

3.3.1.1 Options script

User-defined options

User-defined options can be set using the function setCustomOption at the VCMOptions ob-

ject.

Option Stan-

dard

value

Description

disableUn-

loadWarn-

ing

false Deactivates the warning when leaving the site (e. g. via the browser

back button or by clicking on an external link)

his-

tory.enabled

true Activates/deactivates the rewriting of the URL (bookmarking)

his-

tory.initialContent

true Activates/Deactivates the initial loading of panel content

Example:

Technical Handbook 5.8

336/488

function configure(options, request) {
options.setCustomOption(’disableUnloadWarning’, true)

}

Translations

Translations can be set using the function setTranslations at the VCMOptions object. When

doing so, it is important to use "base" as property name and not the language abbreviation

"en" (see following example). If this is not being considered, the standard translation texts

for English are not found anymore.

Key Description

login.form.message Shows a a message within the login mask

login.form.title Title of the login mask

login.form.submit.label Label of login button

login.form.username.label Label for user name text field

login.form.username.placeholder Placeholder for user name text field

login.form.password.label Label for password text field

login.form.password.placeholder Placeholder for password text field

Example:

function configure(options, request) {
options.setTranslations({
de: {
login: {
form: {
message: ’Bitte benutzen Sie ihr E-Mail als Login’

}
}

},
// base is the property name for english translations
base: {
login: {
form: {
message: ’Please use your e-mail as login’

}
}

}
}

}

Technical Handbook 5.8

337/488

3.3.2 View configurations for the View Configuration Mapper

The View Configuration mapper interprets all view configurations created in i-views. How-

ever, there are several differences between processing in the Knowledge Builder and in the

View Configuration Mapper, which this chapter will discuss.

3.3.2.1 Panel configuration

If the web application is supposed to be based on a panel configuration, the application must

be linked to the panel configuration.

To do this, an object of the main window panel is appended to the application. All other

panel configurations can then be appended to this object. Additional panels (e.g. dialog

panels) are optional. However, if they are used in the web front-end, they must be connected

to the application in this way. It does not suffice to merely define it e.g. as a target window

of an action because it would not be taken into account for the display of the application

otherwise.

3.3.2.2 Apply in

In order to determine a suitable view configuration for a semantic element, it is necessary to

look to the type of the element and to the context in which the view configuration is to be

used. This context is determined via the “apply in” relation. If a view configuration is to be

used in vcm, it should therefore be ensured that the relation was sourced accordingly.

3.3.2.3 Style

To influence the display of a view, it is possible to use so-called “styles”. They can be used,

for example, to configure whether a heading is to be displayed, or whether data should be

highlighted in a specific way.

Technical Handbook 5.8

338/488

The setting for the styles for the display in the web front-end by means of the view configura-

tion mapper are available on the “View configuration mapper” tab. The prerequisite for this

is that a view configuration mapper component has been installed in the KB.

There are multiple setting options for the styles (see figure):

There are a number of Style elements that are already defined in i-views. The following sec-

tion explains what these elements are and how these style elements are created in the Knowl-

edge Builder so that they can then be linked to individual elements of the view configuration

of an application.

In the view configuration, you first have to select the element with which one or more style

elements are to be linked. Depending on the type of the view configuration element, various

tabs are available for configuring the styles (“Actions and styles” -> “Styles” or just “Styles”).

Once you have chosen this tab, you can either define a new style element or link and

existing style element . When defining a new style element it is first necessary to assign it

a configuration name. You can then configure it on the right side of the editor.

The following section describes the individual configuration options for style elements:

Name Attribute

type

Configuration type Description

Technical Handbook 5.8

339/488

class String CSS class Styling through specifi-

cation of a predefined

CSS class i the CSS of

the ViewConfiguration

Mapper or in the “view-

configmapper.config.GET”

script

class (script) Reference to

script

Definition of CSS styling in

the form of a script return

value

collapsed Boolean

dateFormat String

datetimepickerOp-

tions

Reference to

script

downloadRequest String

editCustomButtons Boolean

editStageToggle Boolean

extra Reference to

script

Can be used to create a

user-defined behavior for

an action with the help

of the script and render

mode. Example: A script

that returns URL attribute

values is usedwith the “ex-

ternal” renderMode and

with a parameter specifi-

cation in the “href” line

to define an external web

link for the action of a but-

ton.

extra String

extraDateFormats String

hideFilters Boolean Hides the table query fil-

ters in the table header

hideLabel Boolean Hides the label of a view

configuration element (la-

bel on the tab of an alter-

native remains)

Technical Handbook 5.8

340/488

href String Hyperlink Link to a website or folder

path as per the HTML

standard. Alternatively,

you can enter a parame-

ter name in curly brackets

which is then equipped

with a URL under “extra”

by means of a script.

localAction Boolean Limits the effect of an ac-

tion to the current panel

numberFormat String

readOnly Boolean Properties The properties of the view

configuration element can

only be read in the appli-

cation, not edited. That is

why no “Edit button” is dis-

played.

renderMode Selection Property See the “RenderModes”

sub-chapter

renderMode String Property See the “RenderModes”

sub-chapter

style String Here you can define CSS

properties that are only

used for those views that

are linked to this style.

style Reference to

script

Here you can use a script

to define CSS properties

that are only used for

those views that are linked

to this style.

target String

tooltip String Context help Note that is displayed dur-

ing mouse hover

vcmDetailed Boolean

vcmMarkRowClick Boolean If activated clicks on a ta-

ble row will display them

as marked. This style has

to be linked to a table.

vcmPluginCalen-

darOptions

Reference to

script

VCM plugin Default values that can be

defined by script, e.g. start

date when the calendar

view is called

Technical Handbook 5.8

341/488

vcmPluginChartDat-

aColumns

String VCM plugin

vcmPluginChart-

DataMode

String VCM plugin This is used if the data

of the underlying table is

to be read out either by

row (“rows”) or by column

(“columns”) for the chart

to be displayed; if not

specified, the default data

mode is “rows”

vcmPlugin-

ChartHeight

String VCM plugin Absolute height of a chart

in pixels (e.g.: “300px”)

vcmPluginChartLa-

belColumn

String VCM plugin

vcmPluginChartOp-

tions

Reference to

script

VCM plugin Script that can be used

to control the display of

components of the chart:

Display of keys, scaling of

axes etc.

vcmPluginChart-

Type

Selection VCM plugin Selection options for the

“chart” RenderMode (ap-

plicable for tables):

• bar
• doughnut
• line
• pie
• pole
• radar

vcmPlugin-

ChartWidth

String VCM plugin Absolute width of a chart

in pixels (e.g.: “380px”)

vcmStateContext Selection Selection options:

• global
• page
• none

vcmStateContext String

vcmTruncate String

Note: For each view configuration element separate styling possibilities are available which

Technical Handbook 5.8

342/488

are described in detail in the respective sub chapter. For example, a properties view can be

further adjusted regarding the layout of the labels and their values using specific parameters.

3.3.2.3.1 Definition of style attributes

You can define your own style attributes in addition to those predefined by the application.

You can create the attributes of the styles under View configuration -> Attribute types.

To ensure the style attribute is also written to the JSON output, an addition must be added to

the attribute in the schema. You get to the schema by clicking on “Schema” in the menu

of the attribute. In the schema, you then have to maintain the attribute “Property key” and

enter the name of the attribute there.

“Objects of style” must be entered in this “defined for” field. You add an entry by clicking on

the Plus icon (“Add” button). Once you have entered “Style” as the search term, a list appears

fromwhich you select the entry “Style” (view configuration). Following that, you have to select

the additional tab page in which the new style element is supposed to be displayed.

In the JSON output, the key and value pairs (StylePropertyKey -> Style property) are output as
an array under additionalConfig.

Example

Configuration of the type String for style value

Configuration of the type Additional string for style value

Configuration of the type Display banner attribute

Configuration of the object One style configuration of the type Style

Technical Handbook 5.8

343/488

JSON output:

"properties": [{
"values": [{ ... }],
"label": “First name",
"additionalConfig": {

"jsonKey1": ["jsonValue1"],
"jsonKey2": ["jsonValue2"],
“Display banner": ["true"]

},
"viewId": "ID34304_461524079",
"schema": { ... }

}

3.3.2.3.2 Render modes

RenderModes can be used to apply additional predefined style properties.

RenderModes are available in the styles in the view configuration on the “view configuration

mapper” tab, once via drop-down menu and additionally via input line. Here the freely se-

lectable value entered via the input line takes precedence, which means that it overwrites a

value that was selected via drop-down.

The following renderModes are available in the drop-down menu:

render-

Mode

Explanation Applica-

bility

bread-

crumb

Displays the hierarchy and path navigation Hierarchy

calendar Displays date information in a calendar view; the basis for this

is a table containing the attributes of the value type time, date,

date and time, flexible time or interval with the date and time

type.

Table

chart Displays the data from a table in a chart. Under vcmPlugin-

ChartType you can select the type of chart. Under vcmPlugin-

ChartOptions you can use a script to format the chart more

precisely, e.g. axis scaling, display of keys etc.

Table

download Link to file download Action

Technical Handbook 5.8

344/488

external Generates an external link in connection with href; can be

used, for example, in combination with icon and tooltip.

For dynamic links, an identifier in curly brackets can be used

in the href attribute. If the extra script provides a JavaScript

object with a value for the identifier, this is entered automati-

cally.

You can, for example, trigger a Google search for the name of

the current object in the following manner:

href: https://www.google.com/search?q={search}

extra script

function additionalPropertyValue(element, context) { return { search: element.name() }
}

Action

html Shows the string without masking String

property

markdown Converts text sections equipped with mark-ups into text with

highlights by means of in-line formatting

Text or

string

attribute

medialist Displays the table entries as an HTML text link; displays the

element with their icons

Table

multiline Necessary to display the input field for a string in multi-line

view in an edit view.

Property

nolink The relation target is not linked, but instead shown only as

text.

Relation

property

Technical Handbook 5.8

345/488

pre Displays the string as a pre-formatted and scrollable text String

property

timeline Display of a data record in the form of a timeline; can be ar-

ranged vertically or horizontally.

Script-

generated

view in

group

transla-

tions

Displays language variants (with the relevant flag icons in case

of the string attribute).

Note: This render mode cannot be combined with another

Style containing the render bode "Multiline".

Property

The renderModes available in the input line are related to Bootstrap. They include the fol-

lowing renderModes, for example:

render-

Mode

Explanation Applicabil-

ity

email Creates a link to the email address String

property

image Displays an icon on the action Action

3.3.2.3.3 Usage of CSS

The view configuration mapper supports the use of Cascading Style Sheets (CSS). In addition

to that, it includes a predefined set of CSS properties to which you can refer in the style of

the views. It also offers you the option to define your own CSS properties.

The predefined set is based on the CSS classes defined the front-end framework bootstrap

(getbootstrap.com/docs/3.4/css/). To use these, they can be referenced in a style using the

class property (e.g. "h1" as the value for a heading).

Separate CSS properties can be defined using the following values:

• The attribute style or style (script) is available on a style. Here you can define a CSS that
applies only to views to which this style is linked.

• CSS properties that are supposed to apply to entire applications can be defined in the
script “viewconfigmapper.config.GET.” If separate CSS classes are defined there, you can

access these in the styles via the class attribute.

Technical Handbook 5.8

346/488

3.3.2.4 Execute in

When you create a user-defined action, you can also fetch the relation “execute in.” This has

the effect that the returned data is not applied to all VCM contents but that the change only

relates to a certain view. This view must be set as the relation target of “execute in.”

3.3.3 Login configuration

3.3.3.1 JWT authentication

3.3.3.1.1 Modify the login form

The login form can be modified using the following translation key:

Key Description

login.form.title Title of the form

login.form.message Descriptive/welcome text

login.form.username.label Label of the user name field

login.form.username.placeholder Placeholder of the user name field

login.form.password.label Label of the password field

login.form.password.placeholder Placeholder of the password field

3.3.4 The View Configuration Mapper component

To use the ViewConfiguration Mapper, activation of the corresponding components first in

the Admin tool is a prerequisite.

Technical Handbook 5.8

347/488

The component ensures the specific properties required are created in the view configura-

tion and also creates all REST services that the vcm requires. (Please note: All requests are

preconfigured so that they expect an authentication. The attribute Password and Login is

required for an authentication on the object of the user, with its schema generated by the

component. Linking the user in the settings for the Knowledge Builder is not necessary for

this.)

These are, specifically:

• action
• blob
• config
• element
• topicIcon
• viewconfig-static

Technical Handbook 5.8

348/488

“action” and “element” perform all communication between the ViewConfiguration Mapper

and i-views. “blob” and “topicIcon” are responsible for delivery of the media data within a

Knowledge Graph. “viewconfig-static” defines the area of the REST bridge in which the VCM

front-end files (scripts, templates, etc.) are found. “config” is called during the initialization

of vcm to configure basic configurations (such as language and start topic). All REST services

are preconfigured so that modifying them is not always required. However, modifying the

“config” request is recommended:

function respond(request, parameters, response){

//Personalize your viewconfigmapper configuration here

var options = {

"application" : "viewConfigMapper",

"user" : {

"login" : $k.user().name()

},

"startElement" : $k.rootType().idString(),

"language": getRequestLanguage(request),

translations: getTranslations()

};

response.setText(JSON.stringify(options, undefined, "\t"));

}

Values to be modified are

• application: The application configured in the view configuration for the ViewConfigu-
ration Mapper. This is, by default, “viewConfigMapper” and therefore does not have to

be modified.

• user: User configuration. The current version of vcm only reads the configured name
of the user for display in the front-end.

• startElement: ID or internal name of the topic that should be displayed initially when
the start screen is called up. The root type of the Knowledge Graph is preconfigured.

This should be modified.

• language: The language of the browser making the request is preconfigured. This
attribute should be configured for specific language settings. The relevant I18N set-

tings are foreseen in the front-end templates and can also be expanded in the attribute

“Translations”. Modifications to this should be made in these templates. At this point,

only the language is being defined.

• translations: I18N templates are located in the front-end and should bemodified there.
Their function can be extended at this point.

Technical Handbook 5.8

349/488

3.3.5 Create a project with the View Configuration Mapper

To easily create an adjustment project, a project template is available in the Git under gitlab.ivda.i-

views.de/product/viewconfigmapper/grunt-init-viewconfigmapper.git. The README.md file

of the project explains all further steps. Initialization requires certain parameters. For exam-

ple, you will be asked for the basic path of the request and the name of the application. This

data should be available when first called.

3.3.6 Modify templates

The project template contains the directories components/ and partials/ in the webroot/ di-

rectory. Both directories contain examples of ViewConfigMapper components and partials.

You can add new templates here. The basic templates of ViewConfigMapper remain avail-

able, so you only need to create templates for special adjustments.

The js/ directory contains a JavaScript file where the ViewConfigMapper is initialized.

var vcmOptions = {
config: {

router: {
urlRewrite: true

},
application: "{%= name %}",
ajaxBasePath: "{%=ajax_base_path %}",
instanceId: "vcm_{%= name%}"

},
partials: partials,
components: components,
translations: translations

};

var vcm = new ViewconfigMapper("#viewconfigmapper", vcmOptions);

The ViewConfigMapper receives the configuration settings, partials, components and trans-

lations. The position in which the content is to be rendered is also specified (in this example:

<div id=viewconfigmapper"/>). For partials and components it is only important that they
are located in the relevant directories, because there are grunt tasks that extract the files and

unload them to separate JavaScript files.

Values for application, ajaxBasePath and instanceId would be set during the initialization call

of the project template.

3.3.7 Operate the frontend

The front-end can be built using grunt. The files required for operation are found in the

/webroot directory following generation. It is accessed, if not configured otherwise, using the

start screen index.html.

In the most straightforward case, the files are found locally and can then only be used on the

client side.

There are several ways to make the front-end accessible. The component ViewConfiguration

Technical Handbook 5.8

350/488

Mapper automatically generates a REST service that can deliver static files. This can be used

by placing the files in the webroot directory in the corresponding directory in the REST bridge

being used (default is viewconfig-static). After this, the front-end can be addressed in the

default configuration via HOST:PORT/viewconfig/viewconfig-static/index.html. In addition, it

is also possible to deliver the files using a corresponding server.

3.4 Actions

The VCM supports standard interactions, such as the editing of contents without these having

to be configured separately. However, it is possible to define user-defined actions in a view

configuration. These are actions of type "Script".

Selection is made via a drop-down menu.

For a script action, you have to select “Script” in this menu and create a “Script” under the

“Script (user defined)” entry in the list.

For customized VCM builds it may be necessary to create an action result that feeds the need

of a customized view. To achieve this you must use “Script (Action Response)”. Notice that

you are not allowed to modify the knowledge graph in an action response script.

3.5 Panels

Panels are configuration elements that separate the application interface into sections. They

are used to build the basic layout of an application.

Panels contain further panels or view configurations and can be nested in each other. They

can mutually affect each other.

Panels usually contain exactly one start element (an object or a type) during activation (=

becoming visible), which they pass on to their sub-configurations. Panels that contain view

configurations that display a set of objects (table, facet selection, graph) can also process a

Technical Handbook 5.8

351/488

set of start elements.

Panels themselves have no other functions. These can only be defined with the help of

actions and view configurations.

There are different types of panels:

• Main window panels
• Dialog panels
• Window title panel
• Footer panels
• Normal panels

For each application there must be precisely one so-called main window panel, which can be

divided by means of subordinate panels. In addition, it can be allocated a window title panel

specifying the title and logo (Favicon) of the application.

It is also possible to assign additional dialog panels to the application; these panels can be

displayed as a pop-up on top of the main window. Next to additional panels, they can also

contain window title and footer panels.

A specific panel type must be selected for each panel .

• Layout panels (contain additional panels):
– Linear layout (all subordinate panels are displayed in horizontal or vertical order)

– Switching layout (only one of the subordinate panels is displayed at the same time)

– Variable-sized Layout (only for printing)

• View panels (contain view configuration(s)):
– Defined view (contains only one single defined configuration element)

– Flexible view (multiple views possible, depending on the type of start element)

Setting options

Name Value

Show action results in

panel

All actions that are shown in the source panel cause the target

panel to be displayed with the respective transferred object

(example: every click in the panel object list causes the result

to be shown in the details view panel).

The action setting "show result in panel" overrides this setting.

Moreover, the setting has no effect on "save" actions.

Influences Here you can specify a panel that is influenced by the current

panel (example: the objects displayed in the search results af-

fect which facets are displayed correspondingly).

Inherit to subpanels Boolean, meta-attribute of "Influences". This also allows sub-

panels to activate the influenced panel when activated (exam-

ple: You have a navigation panel that should display the same

for each subpanel of a panel with a switching layout when it is

activated).

Technical Handbook 5.8

352/488

Script for target object With the help of scripts you can specify not only panels but

also conditions under which specific panels are affected by the

current panel.

Setting options for layout

Name Value

class CSS classes for the panel (considered only for web appli-

cations or in the ViewConfig mapper)

Width/height The precise dimensions of the panel can be set here in

percent or down to the pixel.

Maximum width/height Alternatively, you can enter the maximum dimensions of

the panel here. The panel takes up as much space as pos-

sible without exceeding these values.

Flex-grow/shrink Here you can specify the values for the relevant CSS prop-

erty for the growth or shrink factor of the panel. An ele-

ment with a value of 2 for flex-grow, for example, receives

twice as much value as an element with a value of 1.

overflow-x/y (scrollbar) This can be used to define how scrollbars are displayed if

the content of the panel does not fit into its horizontal (x)

and vertical (y) dimensions. The available options are auto,

scroll and hidden.

Style CSS styling rules for the panel (considered only in web ap-

plications or in the ViewConfig mapper)

3.5.1 Activation of panels

Panels exhibit two basic conditions: “active” and “inactive”. A panel is visible when it is active.

The activation of panels functions using the following mechanisms:

A. The main window panel of the application is always active when an application starts

B. The execution location determines which panel become active when an action is executed

Based on A/B, there are subsequent activations based on these rules:

1. Panels influenced are activated

2. Panels with a specialized function (e.g. window title) are activated, and this from all

panels in the corresponding hierarchy

3. Subpanels are activated

4. In the case of a panel with a changing layout: Sister panels of the active subpanel are

deactivated

Technical Handbook 5.8

353/488

5. Continue with 1. until no further panels can be activated (an integrated cycle test pre-

vents endless loops)

Subsequent activations transport the model displayed respectively. If, for example, panel A

shows the object “Mr. Meier”, then the activated subpanel B also shows “Mr. Meier”.

Last of all, this ensures that all panels above the activated panel are also active. However,

their content is not calculated again.

Advanced activation mechanisms (version 5.2 or higher):

So-called “Activation mode” can be used to optimize the calculation of the panel contents in

step A (action activation) and in step 1 (influencing).

This avoids the recalculation of panel contents that are currently not displayed because de-

spite activation, they are not within the visibility area (e.g. a shopping basket). The options

“Refresh model and view” and "Refresh view only" are provided for this case.

The option “Default” is the fallback setting when neither of the two options described above

were selected and leads to panel activation and evaluation of activation chains.

3.5.2 Layout panels

The application is divided into different areas using layout panels.

Linear Layout

Linear layouts arrange subordinate panels either next to each other or one above the other.

Name Value

Orientation (only available if panel type

"Linear Layout" has been selected before)
• horizontal: display order from left to

right

• vertical: display order from top to bot-
tom

Switching Layout

Switching layouts permit alternative displays on the same visualization panel, with only one

of the subordinate panels being displayed at the same time.

Setting options for configuration

Name Value

Activate the first by default

(for changing layout only)

If a checkmark is set, this means that the first subordinate

panel is activated by default (the example below shows the

start screen)

Technical Handbook 5.8

354/488

3.5.3 View panels

View panels serve as containers for individual views. They can however contain no further

panels.

Setting options

Name Value

Context element Here it is possible to specify a concrete object or concrete

type that serves as the source element from which further

paths can be pursued through the Knowledge Graph.

Cannot be overwritten by ex-

ternal context element

If this option is activated, the configured context element

is always used. Influence from other panels has no effect

in this case.

If no context element has been configured, the context el-

ement remains empty.

Script for context element The script determines the start element. The external con-

text element is transferred as the argument.

The “Cannot be overwritten by external context element”

option has no influence, and the script is always executed.

Sub-configuration (only for

defined view)

Here it is possible to specify the one view configuration

that is used for the defined view.

3.5.4 Dialog panels

Dialog panels are special display areas whose contents are displayed in a dialog box. Dialog

boxes appear automatically when the corresponding dialog panel is activated. Just like with

other panels, activation is also possible via certain actions (see relation “Show result in panel”

in Action configurations) or generally on activation or updates of other panels (see relations

“Show actions in panel” and “influences” in other panel configurations).

Actions also have to be used to hide (“close”) dialog boxes. If the “Close panel” attribute is

selected in an action configuration, executing this action in a dialog box has the effect that

the window is closed. Hence, the action must be linked to a menu that is displayed in the

dialog panel or one of its subordinate panels.

Content-wise, dialog boxes are divided into the following three areas:

• Window title
• Content area
• Footer

The contents and the layout within the three areas can be specified using a panel configura-

tion for each. The dialog panel itself represents the content area. To configure the window

title and footer, a sub-configuration of the type window title or footer panel must be created

on the dialog panel (see the example below).

Technical Handbook 5.8

355/488

You can use the “Panel type” attribute on the actual dialog panel and on its window title and

footer panels to determine whether the respective panel provides layout or view functions.

Detailed descriptions of the different panel types are available in the preceding chapters.

Dialog panels can be created as follows in Knowledge Builder:

1. Use a user account that has administrator rights to log on to Knowledge Builder

2. In the navigation area, on the left, open the “Technical” category and select the sub-item

“View configuration.”

3. Select the “Application” tab on the right window.

Technical Handbook 5.8

356/488

4. In the list underneath, select the application to which you would like to add the dialog

panel (usually “View configuration mapper”).

5. Select the dialog panel section in the panel tree below and click on the Create icon

Technical Handbook 5.8

357/488

6. The newly created dialog panel is automatically selected in the panel tree and the details

view is displayed to the right of the panel tree

To create a window title or footer panel, you have to select the dialog panel in the panel

tree, and click on the icon for creating sub-configurations . Following this, a selection

window appears in which the entry “Window title” or “Footer” can be selected. Depending on

the panel type of the dialog panel, additional subelements can also be created in this way.

These, however, then refer to the content area of the dialog box.

3.6 Viewconfig elements

3.6.1 General

3.6.2 Alternative

An alternative view is a collective view for other views. That is, this type of view can be used to

group views that show data for a shared object (e.g. a Properties view with the life data of an

artist or a table view that lists the works of the artist). Unlike in a layout view, the summarized

views are not shown simultaneously, but instead in alternating order (e.g. via tabs).

Technical Handbook 5.8

358/488

To group views, the corresponding views are appended to the alternative view as subviews.

Their position decides the order in which they are displayed. Hence, the arrow buttons can

be used to change their positions.

The “Configuration” and “Extended” tabs feature options for specifying the general display of

the list:

Con-

fig-

ura-

tion

name

The configuration name can be used to identify views and panels.

La-

bel

The value entered here appears as the heading of the alternative

De-

fault

al-

ter-

na-

tive

By default the first attached view is displayed. If you prefer the view on the third

tab to be displayed first, for example, you can specify this view here. The front-end

remembers the last displayed view within a session, so that the user always lands

on the tab they looked at most recently if they look at one alternative view several

times within a session.

Technical Handbook 5.8

359/488

Re-

store

last

se-

lected

al-

ter-

na-

tive

Script

for

label

As an alternative to the “Label,” the title of the alternative can be determined in a

script.

book-

mark

iden-

tifier

Script

for

De-

fault

al-

ter-

na-

tive

Script

for

visi-

bility

This script is used to define whether the alternative should be displayed, and un-

der what conditions.

Actions can be configured for the alternative in the “Menus” tab, while the “Styles” tab al-

lows certain display options to be selected. The “KB” tab features options that only apply to

Knowledge Builder and are not used in the web front-end. The “Context” tab can be used to

configure for which object types the alternative view is to be used and in which application

contexts.

An alternative view should be used when several views are based on the data of an object or

type, but are to be displayed not simultaneously but alternatively.

3.6.3 Layout

A layout view is a collective view for other views. That is, this type of view can be used to

group views that show data for a shared object (e.g. a properties view with the life data of

an artist or a table view that lists the works of the artist). To group views, the corresponding

views are appended to the layout view as subviews. Their position decides the order in which

they are displayed. Hence, the arrow buttons can be used to change their positions.

Technical Handbook 5.8

360/488

The “Configuration” and “Extended” tabs feature options for specifying the general display of

the layout:

Config-

uration

name

The configuration name can be used to identify views and panels.

Label The value entered here appears as the header of the layout

Script for

label

As an alternative to the “Label,” the title of the layout can be determined in

a script.

Orientation Determines the orientation of the sub configuration elements in the web

frontend.

Resizable When enabled, a slider is displayed in the web frontend that allows the user

to resize the area of the layout view.

Boomark

identifier

Role A view role is used to link an action to a corresponding view.

Script for

visibility

This script can be used to specify whether the layout is supposed to be dis-

played.

The “Menus” tab lets you configure actions for the layout, while the “Styles” tab lets you

select certain display options. The “KB” tab features options that only apply to the Knowledge

Builder and are not used in the web front-end. The “Context” tab can be used to configure

for which object type the layout view is to be used and in which application contexts.

A layout view is to be used when several views, which are based on the data of an object

or type, are to be displayed simultaneously and grouped. In contrast to this, there is the

alternative that displays the contained views for an object alternatingly (e.g. as tabs).

Technical Handbook 5.8

361/488

3.6.4 Hierarchy

A hierarchy view is a hierarchical representation of the configurable aspects of an object.

The configuration is performed in the Knowledge Builder by creating a hierarchy view.

The “Configuration” tab provides options for determining the general display of the hierarchy:

Technical Handbook 5.8

362/488

Con-

figu-

ration

name

The configuration name can be used to identify views and panels.

Label The value entered here appears as the heading of the hierarchy

book-

mark

itenti-

fier

Script

for

icon

Show

par-

ent

ban-

ner

Do

not

show

detail

view

Re-

store

last

ex-

panded

nodes

Click

ac-

tion

Script

for

visi-

bility

This script is used to define whether the list should be displayed.

Technical Handbook 5.8

363/488

Struc-

tured

query

(down)

Struc-

tured

query

(up)

Script

(down)

Script

(up)

Rela-

tion

(down)

Rela-

tion

(up)

The hierarchy view starts with an object as the basis. This object is passed to the

hierarchy either by the context element on the higher-level panel or by influencing

it from another panel.

Which nodes and branches should be shown for this object can be configured in

both ascending and descending order. A relation defined in the Knowledge Graph

can be selected as a connection between the nodes, however a structured query

or even a script can too. A combination of these three types is possible, i.e. it is

possible to specify a relation in a descending order, for example, and a structured

query in an ascending order. Specifying both directions in optional, however it is

also possible to configure the ascending order or the descending order only. In

the first case, the object on which the hierarchy is based would be the node at the

bottom. And in the second case, the base object of the hierarchy would then be

the root node of the hierarchy.

Out-

put

up to

depth

Sort

down-

ward

The hierarchy is sorted in ascending order by default. Activating the checkbox

reverses this sort order.

Pri-

mary

sort

crite-

rion

The sort criterion is used to determine the aspect used to sort the hierarchy ele-

ments on one level.

Sec-

ondary

sort

crite-

rion

Like “Primary sort criterion,” except this is only used if the position computed from

“primary sort criterion” is the same for two or more attributes.

Script

for

sort-

ing

This script is used if “Script for sorting” was selected as the primary or secondary

sort criterion.

Disal-

low man-

ual

sort-

ing

This option is used to disable the option of allowing the user to re-sort a hierarchy.

This option is only used in the Knowledge Builder.

Technical Handbook 5.8

364/488

It is possible to configure actions and styles on the entire hierarchy, or to only apply them at

node level. This is why there is a “Hierarchy” tab with the sub-items “Menus” and “Styles” and

a “Nodes” tab with the same subitems. Actions can be configured for the list in the “Menus”

tab, while the “Styles” tab allows certain display options to be selected. The “KB” tab features

options that only apply to the Knowledge Builder and are not used in the web front-end. The

“Context” tab can be used to configure for which object types the hierarchy view is to be used

and in which application contexts.

3.6.5 Properties

A Properties view is a list of the attributes and relations of an object.

The “Configuration” tab features options for specifying the general display of the list:

Con-

fig-

u-

ra-

tion

name

The configuration name can be used to identify views and panels.

La-

bel

The value entered here appears as the heading of the list

Script

for

la-

bel

As an alternative to the “Label,” the title of the list can be determined in a script.

Technical Handbook 5.8

365/488

book-

mark

iden-

ti-

fier

Ini-

tially

ex-

panded

If there are a great many properties, they are not displayed directly in the Knowl-

edge Builder, but instead in expandable form. Activating this option expands them

directly.

Script

for

vis-

i-

bil-

ity

This script is used to define whether the list should be displayed.

Sort

down-

ward

Generally the contained attributes/relations are displayed in the order specified by

the order of the included property view. As it is however possible to specify higher-

level types (e.g. “User relation”) here, the properties grouped in this way are sorted

by name in ascending order. You can change this order by activating the “Sort down-

ward” check-box.

Pri-

mary

sort

cri-

te-

rion

Generally the contained attributes/relations are displayed in the order specified by

the order of the included property view. This option can be used to change this

behavior. The available values are “Position”, “Script for sorting” and “Value”. In

case of “Value”, sorting is performed by attribute value, and not by the name of the

attribute.

Sec-

ondary

sort

cri-

te-

rion

Like “Primary sort criterion,” except this is only used if the position computed from

“primary sort criterion” is the same for two or more attributes.

Script

for

sort-

ing

This script is used if “Script for sorting” was selected as the primary or secondary

sort criterion.

Actions can be configured for the list in the “Menus” tab, while the “Styles” tab allows certain

display options to be selected. The “KB” tab features options that only apply to the Knowledge

Builder and are not used in the web front-end. The “Context” tab can be used to configure

for which object types the Properties view is to be used and in which application contexts.

Actions can be configured for the list in the “Menus” tab, while the “Styles” tab allows certain

display options to be selected. The “KB” tab features options that only apply to the Knowledge

Builder and are not used in the web front-end. The “Context” tab can be used to configure

for which object types the Properties view is to be used and in which application contexts.

For the read view, the Properties view can be used on its own, but it is often also used in

layout or alternative views. In order to allow object properties to be modified, a Properties

Technical Handbook 5.8

366/488

view must be included in an Edit view.

The attributes and relations to be displayed for an object can be configured. For that pur-

pose, it is necessary to add property views to the Properties view which can be used to select

the relevant attribute/relation and determine in detail how these should be displayed.

3.6.5.1 Styling of a property view

Für individuelle Eigenschaften-Konfigurationen kann es vorkommen, dass die Aufteilung des

Layouts geändert werden muss, weil für eine darin befindliche Eigenschafts-View andere

Platzverhältnisse benötigt werden (Label vs. Eigenschaftswert). Dies lässt sich durch eine

Anpassung mit einem neuen Style unter "Style" > "Viewconfiguration-Mapper" > "class" er-
reichen.

Für den "class"-Eintrag gibt es die Klasse "list", die die Aufteilung zwischen Label und darzustel-

lendem Eigenschaftswert bestimmt. Voreingestellter Wert ist "list-5-6". Die Eigenschaften-

View ist in ein gedachtes Raster von zwölf Einheiten unterteilt, wobei die letzte Einheit für die

Aktion an einer Eigenschaft reserviert ist. Daraus ergibt sich ein Eintrag mit "list-N-M", wobei

N+M = 11 ist. N steht für die Breite des Labels, M steht für die Breite des Eigenschaftswerts.

Wenn beispielsweise das Label einer untergeordneten Eigenschaft aufgrund der Benennung

mehr Platz benötigt, kann unter "class" der Wert "list-8-3" eingegeben werden.

Wenn das Label gar nicht dargestellt werden soll und durch die Option "hide label" deaktiviert

ist, kann unter "class" der Wert "list-0-11" eingegeben werden.

3.6.6 Property

A Property view is a display configuration of an attribute or a relation to an object. A Property

view can only be used underneath a Properties view.

Technical Handbook 5.8

367/488

Configuration name The configuration name can be used to identify views and pan-

els.

Label The value entered here appears as the heading of the list

Script for label As an alternative to the “Label,” the title of the list can be de-

termined in a script.

bookmark identifier

Property

Query for virtual proper-

ties

Script for virtual proper-

ties

(automatic update)

Show filter

Technical Handbook 5.8

368/488

Show new properties Like “Primary sort criterion,” except this is only used if the po-

sition computed from “primary sort criterion” is the same for

two or more attributes.

Configuration for em-

bedded meta properties

Configuration für meta

properties

Click action

Tooltip

Placeholder text

Script for placeholder

text

Scipt for tooltip

Script for visibility This script is used to define whether the list should be dis-

played.

Script for sorting This script is used if “Script for sorting” was selected as the

primary or secondary sort criterion.

Sort downward Generally the contained attributes/relations are displayed in

the order specified by the order of the included property view.

As it is however possible to specify higher-level types (e.g.

“User relation”) here, the properties grouped in this way are

sorted by name in ascending order. You can change this order

by activating the “Sort downward” check-box.

Actions can be configured for the list in the “Menus” tab, while the “Styles” tab allows certain

There are additional options for relations:

Technical Handbook 5.8

369/488

Relation

target

view

By default, a link or relation target editor is displayed in edit mode. However,

it can make sense to display e.g. a drop-down list with pre-filtered relation

targets instead. These alternative views can be configured here.

Relation

target

filter

To assist users with their selection of a suitable relation target, a filter query

can be placed here.

Relation

target

type filter

If several object types have been defined as the target of a relation, a filter

on the displayed types can be configured at this point.

Script for

relation

target

identifier

By default, the name of the relation target object is displayed. This can be

adapted here by means of a script.

Show rela-

tion target

Technical Handbook 5.8

370/488

In the “Menus” tab, you can configure additional actions for the property, while the “Styles”

tab lets you select certain display options. The “KB” tab features options that only apply to

the Knowledge Builder and are not used in the web front-end. You can use the “Context” tab

to trace in which view the Property view is used.

3.6.6.1 Relation target filter

To support the user in finding the suitable relation target, a query can be defined for filtering

possible relation targets by means of the option "Relation target filter". When the user clicks

on the magnifier symbol, a filtered amount of relation targets will be shown.

Example:

A user wants to select product parts by year as a relation target. If only certain products (with

parts used at a certain year) need to be presented in the relation target selection, the query

for filtering possible relation targets must comprise these conditions.

In the query, the accessed element (product) for specifying the conditions can be identified

as usual.

By standard, relation targets are shown in a simplified table, listed by their name. If a more

detailed table is needed, it can be configured and assigned to the property view (in this ex-

ample "PartsByYear") via the relation "apply in".

3.6.6.2 Styling of a property view

A property in a properties-list is displayed by default as follows:

Technical Handbook 5.8

371/488

The label of a property is on the left side and the value is on the right side. As all view

configurations a property view can be styled, too. In the following you can see how to style a

property with an example.

For example, if you want to display the values right-aligned, you must first create the appro-

priate css class:

.text-align-right .property-value {text-align: right;}

This must then be passed as style to the individual properties for which this class should

apply:

The result of the four styled properties

3.6.7 Edit

And edit view is used to manage user modification of attributes or relations.

Technical Handbook 5.8

372/488

In the process, all child configurations of the properties type are displayed as form fields. An

edit view can contain exactly one child view, which is either a properties configuration or a

structuring view (layout, alternative) containing properties configurations. Changes can be

synchronized with the Knowledge Graph by means of a Save button.

The “Configuration” tab features options for specifying the general display of the edit view:

Edit

mode

switch-

able

(not

avail-

able

any-

more)

Since i-views 5.4 and on, this option is not available anymore.

This option enables the form mode to be "switchable". That means, Properties are

first shown in read mode only. A Switch button then allows the user to switch to edit

mode.

Only

cus-

tom

but-

tons

(not

avail-

able

any-

more)

Since i-views 5.4 and on, the option "Only custom buttons" is not available anymore.

Instead, every button (except for the entry delete buttons) needs to be configured.

For example, a button with an action of the action type "Save" must be configured

for saving actions if the option "Auto save" is not enabled.

Technical Handbook 5.8

373/488

Role In order to use custom buttons outside the same panel (e. g. within the footer panel

of a dialog), the view role can be used to assign the actions of custom buttons for the

edit view. For this purpose, a menu with actions must be configured and its actions

must be interrelated via the view role to the edit view.

If no custom role is specified, the implicit role of an edit view is "edit".

Auto

save

This option is available since i-views 5.4. It is also known as "Micro-edit" and enables

the automatic saving of changes being made, without the need for a button press

(meaning: without the need to trigger an action of the action type "save").

Note: To avoid low performance and erratic behavior of property edits, the option

"Auto save" should not be used in combination with a long running transaction.

Since a transaction leads to new entries being added onto the web frontend ses-

sion stack each time a save action is triggered, the performance decreases due to

increasing data amounts transferred back and forth.

Layout of property groups in an edit view

If a different layout is needed for edit views, there are following possibilities:

• Several Properties views can be arranged underneath an Edit view by means of an inter-
mediate Layout view. This allows horizontal or vertcal orientation of input elements.

• The pattern of label vs. value can be modified so that, for example, the label gets more
space. This is done by applying a style onto the properties view, containing a class

reference "list-n-m", whereas n+m = 10.

Note: In contratst to the properties view used without an edit view, the properties view

used within an edit allows a layout pattern of 10 units in total instead of 12 units. When

using 12 units for n+m in list-n-m, the edit might be scattered.

3.6.8 Form inputs

Form input views serve for retrieving user input values which are independent from the exis-

tence of a semantic element. The input of the form input fields can be fetched and processed

by means of an action using a script, e. g. by saving as an attribute value, or used as the input

of a search compound to provide a search with parameters.

It should be noted that in contrast to Edit views, an action with the action type "Save" has no

effect on form views and will not persist the values.

The following form input types are available:

Form input for Value capturing

Boolean Checkbox for input of boolean values

Date and time A date picker that can be customized to accept either a date, a time

with hours and minutes, or both

Technical Handbook 5.8

374/488

Number A number spinner that can be customized to accept either integers

or decimals

Choice Specification of a script which returns an array of character strings

or semantic elements for selection in forms of a drop-down entry.

The selection/display can be preset with an initial value using the

script.

String Input field for character strings

Input with proposals An input field that assists the user by proposing suitable values.

Reading out form inputs using actions or scripts

To process the values from the input fields, an action or a script needs a way for addressing

them. An action can either be located in a menu at the form input itself or at a different

location, whereas a reference needs to be set up from the action to the form input by means

of role assignment ("perform by"). A role assigned to a form input can also be used by a

script to access the corresponding view, which will provide the input value.

Note: When using a view role, the identifier of the role must not contain any whitespace.

Since one view can have several roles, the roles are processed in a whitespace-separated

form. A single view role with an identifier containing a whitespace-separated string therefore

would be misinterpreted as several roles, leading to errors.

Following application scenarios are possible:

1. Reading outmultiple form inputs under a common layout using a single action, but

process each entry individually: Relating the action via a role to the form view, address-

ing each individual value via an individual role bymeans of "this.viewsWithRole(roleName)[0].value()".

2. Reading out only one form input: Relating an action via a role to the form entry view,

addressing the entry value by means of "this.value()".

3. Reading out all form inputs at once - provided the values being of the same type or

the order of values is not important: Relating the action via a role to the layout view,

assigning one role to all form inputs and addressing all values at once by means of

"this.viewsWithRole(roleName)", then processing the array items.

Note: Addressing all form inputs by assigning one role to all form inputs and the action

by means of "this.value()" will not work since roles must be uniquely assignable in the

web frontend.

Example:

A layout view contains the form inputs for "choice", "boolean" and "string".

• If an action only needs to access one dedicated form input, e. g. the string input field,
the input view gets a role called "inputField" and the action is related to the role "input-

Field" via the relation "perform by".

Then the action of the action type "Script" gets a custom script called "Script (custom)".

In every case, "this" is the view the action is located in or - if a role is assigned - it is the

view interrelated via the role. The value of the input field is then read out by means of

"this.value()".

• If all three entries need to be read out individually by means of one action at once, the

Technical Handbook 5.8

375/488

action needs to be related to the layout view via a role ("form") and the individual form

inputs each get their own role.

To address the input field again in this case, the action is related to the "form" role

via the entry/relation "perform by". The action has the action type "Script" and the

"Script (custom)". Now, "this" is the layout view. To access the input field within the

script, the view with the assigned role "inputField" needs to be addressed. The value of

the input field is then read out by means of "this.viewsWithRole(’inputField’)[0].value()".

Since "viewsWithRole" returns an array, the one and only input field view is the first (one

and only) array element with the index number 0.

Forms as input for search compounds

Forms can also be used to act as parameter input for a search. To achieve that, a form

input needs to be be linked to a search compound by the "Input of" relation. Furthermore,

the "Parameter name" must be configured. It determines which search parameter the form

input relates to. If the form input is marked as "Required" and no user input is provided, the

search will not be executed. Otherwise, the search parameter is deactivated if the input is

empty. For further details refer to the chapter on Search compounds.

Input validation

Form inputs can be marked as "Required". In this case the input field receives a designa-

tion to indicate to the user, that an input is mandatory. This also influences how a missing

parameter is handled if the form input is part of a search compound (see above).

The second validation mechanism is the "Script for validation" that can be configured for any

form input. Consider the following example for a script that validates the input of a number

field:

function validateFormValue(value) {
if (value < 0 || value > 10) {

this.setValidationErrorMessage(’Only values between 0 and 10 are allowed.’)
return false

}
return true

}

The validation error message is presented to the frontend user who can then correct his

input. If the validation script returns "false", the invalid value will not be accessible by any

scripts and will also not be passed to the query, if the form input is part of a search com-

pound.

It is also possible to access the values of other form inputs by using any of the methods de-

scribed above. It should be taken care though that there is no circular dependency between

the validation of multiple form inputs. In that case they will not be able to access each other’s

values and will receive undefined instead.

Input with proposals

For an input with proposals, there are two ways to configure how values should be derived

from user input. When specifying a "Query for proposed values", the user will be presented

with the query results. To make the query results dependand on the current user input,

the predefined parameter "searchString" can be used. Alternatively, a "Script for proposed

values" can be provided:

Technical Handbook 5.8

376/488

function valueProposals(searchString) {
return [
new $k.TypeAheadProposal(searchString.toUpperCase()), // a function applied to the user input
new $k.TypeAheadProposal(42, ’forty-two’), // a static number with label
new $k.TypeAheadProposal($k.Registry.element(’myElement’)) // a semantic element of the knowledge graph

]
}

In any case, there are two additional configuration options:

• Threshold: Defines the number of characters the usermust type, before the first request
for proposals is sent. For expensive queries, this value should be chosen sufficiently

high to reduce performance impact. The default threshold value is 3.

• Restrict input to proposals: If this checkbox is set, the user will not be able to submit
any value that was not proposed to him. Otherwise, the user is free to edit the chosen

proposal before submitting.

3.6.9 Table

A table view is a display configuration of a list of objects. A table view can be used indepen-

dently at different points and its content depends on the context.

The “Configuration” tab features options for specifying the general display and behavior.

Action

(selec-

tion)

The action configured here is executed if a row is selected in the front-end (e.g.

by clicking).

Technical Handbook 5.8

377/488

Num-

ber of

rows

(page

size)

This specifies the maximum number of rows that are displayed on one page.

Auto-

matic

search

Options:

• Automatic search
• Automatic search up to limit
• No automatic search

Label A table is displayed with the heading in the front-ends. By default, the name is

generated from the context. You can use “Label” to display a value other than

the name.

Config-

uration

name

The configuration name can be used to identify views and panels.

With-

out

column

filter

Here you can determine whether a column filter is supposed to be displayed

between the table header and table content. The column filter can be used to

filter the query result for the column by entering a term.

Script

for

label

Instead of using the “Label,” the displayed attribute name can be determined in

a script.

Table

of

This references the view whose results are displayed in the preceding table. This

can be a query, of a query result view or another table.

On the “Sorting” tab, you can configure the sort response using the columns.

The “Table” tab has two sub-items: “Menus” and “Styles.” In the “Menus” tab, you can con-

figure additional actions for the table, while the “Styles” tab lets you select certain display

options that affect the entire table. In the next tab, “Columns" > "Styles" you then select the
display options for columns accordingly.

The columns of the table are defined using sub-configurations, which are explained in the

next section. The order of the columns can be changed using arrow buttons in the tree view

on the left side.

The column view represents the configuration of an entire column. Here you can influence

the display and the response (e.g. filtering).

The content of the cells (“column element”) in turn is defined by the sub-configuration as

described in the next section.

Technical Handbook 5.8

378/488

Configuration

name

The configuration name can be used to identify views and panels.

Label Column name displayed

Script for label Instead of using the “Label,” the displayed attribute name can be de-

termined in a script.

bookmark iden-

tifier

Column

width (%)

Width of the column in percent of the width of the table

Standard opera-

tor

This is where the default is selected from the possible filter operators

If nothing is configured, the first one in the list is selected.

Search string

Do not show This is used to hide a column. It is nonetheless calculated in the back-

ground and can be used e.g. for sorting.

Mandatory for

query

Not sortable In the default setting, the columns can be sorted by clicking on the

header. This function can be deactivated here.

Script for pre-

processing input

fields

The text that was specified in the column filters can be influenced via

a script here.

Technical Handbook 5.8

379/488

Search text The text for column filtering can be specified in advance here.

The column element sub-configuration determines the content of the column. The content

is typically derived from the elements to which this table refers.

Con-

figu-

ration

name

The configuration name can be used to identify views and panels.

Do not

show

This is used to hide the column element. This is nonetheless calculated in the

background and can be used e.g. for sorting or filtering.

Do not

create

Do not

search

Em-

phasis

This lets you choose if the content of the column element is to be highlighted by

underlining it.

Map-

ping

ele-

ment

Prop-

erty

The property of the element to be displayed in this column

Technical Handbook 5.8

380/488

Qual-

ity

Struc-

tured

query

ele-

ment

As an alternative to “Property,” the content to be displayed can also be deter-

mined using a structured query.

Script As an alternative to the first two method, the content to be displayed can also be

derived from the element via a script.

Use

hits

Allows the use of all meta properties of a search result (“hit”), such as quality,

cause etc.

If the search results are processed further by a script, JavaScript object

$k.SemanticElement or $k.Hit is forwarded.

3.6.9.1 Menus in tables

Menus can be configured at different points of a table. The selection of the configuration

location determines whether a menu is available for the entire table, for the column of the

table or for every column element:

Configuration location Menu with actions for the ele-

ment

Technical Handbook 5.8

381/488

Table:

"Table" tab > “Menu” tab
Actions for the entire table:

Column:

“Menus” tab

Actions are displayed in the col-

umn description of a table:

Technical Handbook 5.8

382/488

Column:

Menu as a subelement of a column

Actions are output in every row in a

column:

Menu in a separate column:

Menu element in the same col-

umn as the column element to be

displayed:

Technical Handbook 5.8

383/488

Column element:

“Menus” tab

The action is output after every

value:

Output for one object per column

element:

Output for several objects per col-

umn element, e.g. in the dis-

play of target objects of a relation.

The target objects are comma-

separated (configuration as shown

on the left). In this case, you

should preferably use icons to

save space; alternatively, the la-

bel can be replaced with a tooltip

(mouse-over display).

Note: For relation targets, the link

to the target object can be sup-

pressed by using the “no link” style

attribute.

Technical Handbook 5.8

384/488

3.6.10 Search

This section describes various views that can be used to implement a search - from the "all

in one" search to more complex scenarios with specialized views that are distributed across

several panels.

Since version 5.8, the so called search compound has been available, whichmakes the search

field view and the search results view no longer necessary.

3.6.10.1 Search view

A search view allows search pages to be created on which the search query and the search

results are displayed at the same time. If the search does not have any parameters, or only

optional ones, then the search is run immediately and the results displayed directly. If there

are obligatory parameters, then the search is only run following a user input.

A search view is created in the Knowledge Builder for a simple search page.

Technical Handbook 5.8

385/488

The “Configuration” tab provides options for determining the general display of the search:

QueryThis is where you configure the query that is to be executed when the query is exe-

cuted.

Pa-

ram-

e-

ter

name

Name of a search parameter. All parameters that are configured in the search must

also be configured at this point to ensure no errors occur in the search.

ScriptIf the parameter value is to be determined via a script, this has to be configured here.

Technical Handbook 5.8

386/488

Value

de-

ter-

mi-

na-

tion

Here you specify how the parameter value is to be determined.

• “Script” (value determined via script)
• “Script, can be overwritten” (the value is determined via script, but is overwritten
by user input on the front-end)

• “User input (optional)” (the parameter value is copied from the user input if it is
set. It is displayed to the user as optional in the front-end. Please note that the

search is then configured in such a way that this parameter does not have to be

set)

• “User input (obligatory)” (the user must enter a value in the front-end, otherwise
the search is not executed)

• “User input (deactivated if blank)” (the parameter is set for the search if there
was no user input. Otherwise the parameter is deactivated when the search is

executed)

TypeData type of the parameter

La-

bel

(Pa-

ram-

e-

ter)

Name of the parameter in the front-end

Or-

der

The order in which the parameters are displayed in the front-end

La-

bel

(Search

View)

The value entered here appears as the heading of the search

Con-

fig-

u-

ra-

tion

name

The configuration name can be used to identify views and panels.

Use

Hits

Determines whether topics or hits are generated.

Script

for

la-

bel

As an alternative to the “Label,” the title of the group can be determined in a script.

Script

for

vis-

i-

bil-

ity

This script can be used to specify whether the group is supposed to be displayed.

Technical Handbook 5.8

387/488

Script

for

ta-

ble

con-

fig-

u-

ra-

tion

As an alternative to “Table”, a script can be used to determine the table displayed at

this point.

Ta-

ble

The search results are displayed in the front-end in the table configuration that is con-

figured here.

Actions can be configured for the search in the “Menus” tab, while the “Styles” tab allows

certain display options to be selected. The “KB” tab features options that only apply to the

Knowledge Builder and are not used in the web front-end. The “Context” tab can be used

to configure for which object types the search view is to be used and in which application

contexts.

3.6.10.2 Search compound

For synchronizing the state ofmultiple search related views use a so called Search compound.

A simple search compound consists of a query definition and a table view that is used as its

output.

If input is required, one or multiple form input fields can be used, replacing the search field

views used in the past. For each input field, the corresponding parameter name that is used

in the query definition must be specified. By using the various types of input fields, the user

input can be guided, for example by providing a conveniant date input.

Filtering of search results is done by means of a facet view.

Any number of inputs, outputs and filters can be specified, even views that are not always

visible.

New search compounds can be created from the context tab of any of the views involved.

Technical Handbook 5.8

388/488

3.6.10.3 Facet view

Display

Configuration

A facet view can be created as a sub configuration of a panel, but not within another view

configuration elements. The panel of the facet view needs to influence the search result

panel.

QueryHere a query must be configured when the facet view is not linked with a search field

view. If, for example, the facets are intended for influencing a search result table

containing employees, the query must output the employees as source for the facets.

If the facet view is linked to the search field view, no query needs to be defined.

La-

bel

The title to appear above the facet view in the front-end.

Technical Handbook 5.8

389/488

Con-

fig-

u-

ra-

tion

name

Configuration names can be used to identify views and panels.

Script

for

la-

bel

As an alternative to a permanent label, the title can also be set via a script (to be found

in the tab "Extended").

In order to configure facets, it is necessary to create facet views and attach them to the facets

view. These can be arranged in multiple hierarchical orders.

Technical Handbook 5.8

390/488

Query

for

de-

ter-

min-

ing

the

par-

ent

term

In case a term hierarchy is needed, the parent term must be configured by this query.

The child element is used as input element here fore. In the query, the label "parent-

Term" identifies the parent element.

Note:

• For the facet hierarchy to be able of being built up, the "query for term detection"
needs to be configured for comprising both terms and parent terms. The herein

contained parent terms are subsequently used for building up the hierarchy by

means of the "query for parent term detection". Therefore, testing the queries is

advised.

• At the moment, only terms of the same type can build a hierarchy.
• As usual in hierarchies, you can not display infinite loops.

Technical Handbook 5.8

391/488

Query

for

de-

ter-

min-

ing

the

term

Structured query that is used to form the facet. This query is obligatory when the

standard behaviour comes into account or when it is set dynamically (which means

that it keeps empty in case of static mode).

The query must be specified as follows: For narrowing down the search results, facets

can be defined for relation targets. The input element type is equal to the type of

the search results from the query of the query view. The terms to be found must be

identified by the label "term".

In principle, everything is possible like in all structured queries. It is also possible that

the label "term" is used several times within one structured query. In this case, the

behaviour of the terms specified by the values of "Term operator".

Hide

from

num-

ber

of

terms

The facet is hidden if the search results underlying the facet exceed this number.

La-

bel

Ideally, a label is always specified. If not set, the name of the input element of the

query is used.

Dis-

play

child

terms

ini-

tially

If the facet has a hierarchical structure, you can use this option to define whether the

sub-facets should be displayed initially. Per default, the child elements are displayed

after the parent element has been selected.

Con-

fig-

u-

ra-

tion

name

Views and panels can be identified via a configuration name.

Dis-

play

blank

terms

If no results are found for the facet, it is hidden by default. This option ensures it is

displayed nonetheless.

Technical Handbook 5.8

392/488

Max-

i-

mum

num-

ber

of

terms

Describes the maximum number of terms the facet can have. per default, all terms

are displayed.

Do

not

dis-

play

term

num-

ber

In the front-end, the number of found terms is displayed right behind the facet title.

This option deactivates this.

Term

op-

er-

a-

tor

At this point it is possible to configure how the terms are linked to each other. You can

use the “And” or the “Or” logic that applies on the search result regarding the selected

facets.

Technical Handbook 5.8

393/488

Term

type

If no term type is selected (default behaviour), the terms will be detected by the query

of the facet configuration. In the query, relation targets or attribute values can be

defined for terms. Additional to the default behaviour following settings are available:

• Dynamic: The value range of the terms are detected automatically. The values
used for term detection must be identified by the label "terrmValue" within the

"Query for term detection".

• Static: All terms to be displayed must be configured indiviudally. For every term
a query needs to be configured that specifies the possible hits of the main query.

Example of a static facet:

Each term of the facet needs a label for display:

The query within the tab "Extended" defines the applicable criteria for the facet:

Technical Handbook 5.8

394/488

Sort

terms

in

de-

scend-

ing

or-

der

By default, the terms found for a facet are sorted in ascending order. This option

reverses the sort order.

Sort

terms

by

num-

ber

The facet terms are generally sorted in alphabetical order; with this option, they are

sorted by the number of results found.

Faceting for attribute values

Search results can be faceted concerning predetermined attribute values, for which the term

type "static" must be set. If the term type "static" is chosen, the terms must be added as a

subconfiguration within a facette by clicking on the button "link new". For this purpose, the

configuration is built up as follows:

1. As usual, the structured query of the facette contains the elements to be filtered, including

the identifier "term" at the property:

Example of a query for term identification with attribute values as terms

2. The facette itself has a subordinate term element with a query for a more detailed defini-

tion of the terms. The structured query for the terms then only contains the conditions for

the properties of the elements. An identifier is not used at this point:

Example of a query of a static term (predetermined attribute value)

Notes:

• The labeling of the facet term sub-configutaion is obligatory. If no label is set, the facet
term will not be displayed.

• For the static term, a term element is needed. If a facet element is used, the facet term
will not be displayed either.

Technical Handbook 5.8

395/488

3.6.10.4 Search field view

Note: Search field views are deprecated in favour of Search compounds in combination with

Input fields.

A search field element is used, if only a search slot and no search results is to be displayed in

a certain place. Configuration takes place as for the search view but without the configuration

for displaying the results.

The “Configuration” tab provides options for determining the general display of the search

field:

QueryThis is where you configure the query that is to be executed when the query is exe-

cuted.

Pa-

ram-

e-

ter

name

Name of a search parameter. All parameters that are configured in the search must

also be configured at this point to ensure no errors occur in the search.

ScriptIf the parameter value is to be determined via a script, this has to be configured here.

Technical Handbook 5.8

396/488

Value

de-

ter-

mi-

na-

tion

Here you specify how the parameter value is to be determined.

• “Script” (value determined via script)
• “Script, can be overwritten” (the value is determined via script, but is overwritten
by user input on the front-end)

• “User input (optional)” (The parameter value is copied from the user input if it is
set. It is displayed to the user as optional in the front-end. Please note that the

search is then configured in such a way that this parameter does not have to be

set)

• “User input (obligatory)” (The user must enter a value in the front-end, otherwise
the search is not executed)

• “User input (deactivated if blank)” (The parameter is set for the search if there
was no user input. Otherwise the parameter is deactivated when the search is

executed)

Query

for

pro-

posed

val-

ues,

script

for

pro-

posed

val-

ues

Proposed values are possible elements or strings that are offered to users in a list at

the search slot. These in turn can be selected as search string input (also known as

“type ahead”).

For configuration, a query or a script can be placed on the parameter. If a structured

query is used, the names of the elements found are displayed as default values on

the front-end.

In this example, only subjects belonging to "product class" would be listed as proposals,

represented by their primary name.

In detail, a query allows to define which attributes of the element should be used (it

doesn’t have to be the primary name in every case).

A search pipeline can be used to combine arbitrary conditions (structured queries)

with arbitrary attributes (queries). A search pipeleine needs a ’searchString’ parameter

for input.

A script (see template in the Knowledge Graph) can also be used to deliver la-

bels/strings as fixed values only (that is, without a mandatory reference to the Knowl-

edge Graph). The "elementId" and "iconLocator" keys are optional.

TypeData type of the parameter

La-

bel

Name of the parameter in the front-end

Or-

der

The order in which the parameters are displayed in the front-end

La-

bel

The value entered here appears as the heading of the search

Technical Handbook 5.8

397/488

Con-

fig-

u-

ra-

tion

name

The configuration name can be used to identify views and panels.

Script

for

la-

bel

As an alternative to the “Label,” the title of the search field view can be determined in

a script.

Search field elements can be combined with search result views and facet views. To ensure

that the results of a search from a search field element are shown in a search result or facet

view, the actions must be configured accordingly. The simplest option is to configure the

panel that contains the search field element so that the actions are executed in a panel that

contains a facet view or a search result view.

If you want to connect all three views to each other, you activate the actions of a search

field element in a panel that contains a search result or facet view as described above or you

configure this panel so that the other result view panel is influenced by this panel.

Technical Handbook 5.8

398/488

3.6.10.5 Search result view

Note: Search result views are deprecated in favour of Search compounds with a configured

output.

A search result view is used if a view is supposed to display only the results of the search,

and not the search parameters. If the configured search has no parameters, it is enough to

configure one search result view. If there are parameters, the search result view should be

linked to a search field element.

It can be created in the Knowledge Builder.

Technical Handbook 5.8

399/488

The “Configuration” tab provides options for determining the general display of the search:

Query This is where you configure the query that is to be executed when

the query is executed.

Label The value entered here appears as the heading of the search

Configuration

name

The configuration name can be used to identify views and panels.

Script for label As an alternative to the “Label,” the title of the search result view can

be determined in a script.

Table The search results are displayed in the front-end in the table config-

uration that is configured here.

Script for table

configuration

As an alternative to “Table”, a script can be used to determine the

table displayed at this point.

3.6.11 Graph configuration

A graph configuration is used to display objects in a graph. A first introduction to the use

of graphs in the Knowledge Builder can be found under Knowledge Builder > Basics > Graph

Technical Handbook 5.8

400/488

editor.

Details on the setting options for the different views that are required when embedding a

graph in the front-end are explained under Knowledge Builder > View configuration > View
configuration elements > Graph.

A Graph view and a Graph configuration view are required for display.

The panel in which the graph is to be displayed contains a graph view (“V:Graph”). Up to ver-

sion 5.1, the context element (called start semantic element) was optional and displayed in

the graph when the application started. From version 5.2, it is obligatory to assign a context

element in order to avoid triggering an error message. The object itself is not important, it is

not displayed by default.

The graph view only has to contain a link to the graph configuration. The setting for the size

of the graph field via the Width and Height fields is optional but usually available.

The Graph view ensures that the graph is displayed in full. The Graph configuration is used

to determine which nodes and relations are to be displayed.

Technical Handbook 5.8

401/488

A node category must be created for every type whose objects (or types) are to be displayed.

These are displayed by default as a key in the graph.

The graph displays objects that are directly attached to the type or its subtype. Use Adapt to

concrete type to display subtypes separately in the key without having to create them individ-

ually as node categories.

In order to display types instead of objects, a checkmark must be placed by the Apply to

subtypes box in the Context tab.

In the Nodes tab you can go to Menus and assign a satellite menu in order to continue

working in the graph (see Knowledge Builder > View configuration > Actions > Actions for the
ViewConfiguration Mapper > NN-Expand/NN-Hide/NN-Pin actions).

In order to display the relations between the nodes, a link is required under each node cat-

egory. Here the relations to be displayed for this type are specified. The relations can be

specified via a prompt, a script or via the direct specification of the relation. User relation can

be assigned if all relations (apart from system relations) are to be displayed.

Technical Handbook 5.8

402/488

For more details see the vcm-plugin-net-navigator chapter

3.6.12 Text

The text view can be used to display text that is either statically specified or calculated via a

script.

Text Static, multilingual text

Script for text Script for calculation of the text

Label Optional heading

Script for label Optional script for calculating the heading

Example of a text script:

function text(element)
{

return "Through a script in the Knowledge Graph" + $k.volume() + " generated text";
}

Technical Handbook 5.8

403/488

3.6.13 Image

Displays an image saved in the Knowledge Graph that is either statically specified or calcu-

lated by means of a script.

Im-

age

Static image

Script

for

im-

age

Script for calculation of the image. A blob attribute is expected as the return value.

Dynamic blobs (e.g. through download by means of HTTP client) are not possible.

Label Optional heading

Script

for

label

Optional script for calculating the heading

Width

/ height

Fixed width / height of the image

3.6.14 Script generated HTML

This view generates HTML via a script. Both Knowledge Builder and ViewConfigMapper show

this unfiltered. Hence, the script developer is responsible for ensuring that user contents

are not output unfiltered. The display options in Knowledge Builder are very limited (e.g. no

CSS).

For more complex HTML you should use a script-generated view instead.

The following arguments are transferred to the script as parameters:

ele-

ment

$k.SemanticElementThe element in the context of which the view is displayed

docu-

ment

$k.TextDocument Document on which HTML is output

There are two approaches for outputting HTML:

• Output the HTML source code using the print() function of the document
• Structured output using an MXL writer

The example below illustrates the use of an XML writer for outputting a heading:

/**
* Render the semantic element on the document.

Technical Handbook 5.8

404/488

* @function
* @param {$k.SemanticElement} element The element to render
* @param {$k.TextDocument} document Target document
**/
function render(element, document)
{

var xmlWriter = document.xmlWriter();
xmlWriter.startElement("h1");
xmlWriter.characters(element.name());
xmlWriter.endElement("h1");

}

3.6.15 Script generated view

A script-generated view allows custom view components to be defined. The data are gener-

ated by a script and passed on using JSON. Displaying this is the job of the front-end.

view-

Type

Freely selectable identifier that is output in JSON. This is used for assigning the cus-

tom components in the front-end.

ScriptDelivers the data that are output in the JSON.

Two parameters are passed to the script:

el-

e-

ment

$k.SemanticElementThe element in the context of which the view is displayed

view object Prefilled object with the view data. Configuration elements such as styles

are already included in this.

The following script provides the data for a view that the plugin vcm-plugin-timeline contains:

/**
* Get json object to modify.
* @function
* @this $k.View
* @param {$k.SemanticElement} element
* @param {object} json object
* @returns {object} modified json object
**/

function customizeView (element, view) {
view.options = {
layout: ’vertical’

}
view.events = $k.Registry.type(’election’).allInstances().map(function (election) {

Technical Handbook 5.8

405/488

return {
elementId: election.idString(),
name: election.name(),
date: election.attributeValue(’electionDate’).toString()

}
})
return view

}

3.7 Bookmarks and history

Due to the fact of the ViewConfig-Mapper being a single-page application, the address of the

application keeps always the same (http://xxx/yyy/index.html) - irrespective which content is

being visualised or which panel is being displayed.

By means of defining bookmarks, the application designer in person is able to define a

schema which builds up specific addresses for the currently shown content. For the user,

this in turn grants direct access to a specific application state. Furthermore, bookmarking

improves indexability of the application by web search engines.

3.7.1 Bookmark Resource

The definition of bookmarks has its starting point at the bookmark ressource. The book-

mark ressource is situated within the REST service for the ViewConfig-Mapper. The book-

mark ressource automatically is co-created when the ViewConfig-Mapper component is be-

ing added. Keep in mind that the herein described "Bookmark Resource" has to be config-

ured to run without any authentication. This is because the ressource creates redirects which

must work prior the moment of login (prior loading of the application) as well.

Technical Handbook 5.8

406/488

The ressource allows the definition of any desired amount of "path patterns" - thus address

patterns that can be used by the application from that point on. Path patterns must not

overlap. This means, a specific address must be relatable to exactly one specific path pat-

tern. Furthermore, overlap with other ressources must be avoided (e. g. "action" or static

ressources as well).

A path pattern consists of static and variable parts. Dynamic parts are written in curly brack-

ets (see chapter concerning REST ressources):

Further examples:

• help/{topic}
• performance/{company}/{year}

Following the definition of a path pattern, parameters have to be defined for the variable

part. Parameters are meta-attributes of the path pattern attributes. A parameter normally

represents an element of the Knowledge Graph and is shown in forms of the ID of the ele-

ment when the address is being created (e. g. ID1527_373749).

By defining a "parameter conversion" script the default behaviour can be modified. This

comes into account for following:

• representing elements in addresses in a more meaningful way
• using external IDs (e. g. part number) for addressing content
• using stable IDs that keep valid even if internal IDs change

A common use case is the indication of an object name instead of the objects’ ID:

Technical Handbook 5.8

407/488

Script "Parameter conversion"

The script for parameter conversion contains two functions:

• identifier(optionalElement): the panel is represented as a part of the bookmark URL.
This function determines in which way the semantic element of the panel will be con-

verted into a text identifier for the URL (= processing of the "bookmark output").

• element(parameterValue): this function determines how an input URL is going to be
interpreted to get the semantic element for being displayed in the panel (= processing

of the "bookmark input").

In this example, the variable (e. g. optionalElement.name()) is accessed in the function "iden-

tifier()", in combinationwith assignment of the variable (e. g. $k.Registry.elementAtValue(’name’,

parameterValue)) in the function "element()":

/**
* Returns an (element-) identifier for the parameter
* @function
* @param {$k.SemanticElement} optionalElement The element for which the identifier shall be returned (optional)
* @returns {string}
**/

function identifier(optionalElement) {
if (optionalElement)

return optionalElement.name()
else

return undefined
}

/**
* Returns an element for the given parameter value

Technical Handbook 5.8

408/488

* @function
* @param {string} parameterValue The parameter value
* @returns {$k.SemanticElement}
**/

function element(parameterValue) {
return $k.Registry.elementAtValue(’name’, parameterValue)

}

Composite parameters allow addressing of elements by means of structured descriptions (e.

g. {chapter}/{version}). For each parameter fragment of the composite parameter theremust

be a corresponding Bookmark-Parameter object configured below the Composite-Parameter

object. The Composite-Parameter object requires a Parameter Conversion script, which han-

dles the multiple parameters.

Hint:

By using parameter conversion scripts, session varaibles can be transported as well. This

allows addressing an application state which itself is not defined solely by the displayed con-

tent.

Herefore the variable (e. g. $k.Session.current().getVariable("currentPersona")) can be ac-

cessed in the function "identifier()", in combination with assignment of the variable (e. g.

$k.Session.current().setVariable("currentPersona", parameters.persona)) in the function "ele-

ment()".

3.7.2 Link to Panels

Path patterns, as explained in the preceding chapter, can be linked to a panel (via the relation

"Path pattern" of the respective panel). This means that the pattern is going to be used for

construction of the address, as soon as the panel is activated (= visible).

Caution: When designing the application, it is important to observe that at no time more

than one panel with path pattern can be active simultaneously. Otherwise, the ViewConfig-

Mapper cannot decide which address pattern has to be used.

Hint: If a more than one panel needs to be displayed when invoking a path pattern, this

Technical Handbook 5.8

409/488

can be solved by assigning a path pattern to one panel and by linking the first panel via the

relation "influences" to the second panel which has no path pattern (example: panel with

navigation bar and panel with content both need to be displayed at once).

The element, which is visible in the active panel, is going to be used for parameter construc-

tion of the path pattern. It is necessary to ensure that the panel knows its element so that a

parameter can be constructed. A fixed view panel usually knows the element, so it should be

preferred instead of using a layout panel containing a fixed view panel.

A layout panel only knows the element if a context element is set.

If the element of another panel is to be considered for constructing parameters, the concern-

ing panel has to be linked to the parameter via the relation "Path pattern parameter".By this,

you can for example address a comparison view of two products (compare/product_A/product_B):

For the comparison action of a menu within a view, a script needs to be added:

The action script for setting the session variable is shown in the following example:

Technical Handbook 5.8

410/488

/**
* Performs a custom action. Can access the UI (open dialogs etc. with context.ui)
* @function
* @param {$k.SemanticElement} element
* @param {object} context Parameters defined by the environment
**/

function onAction(element, context) {
$k.Session.main().setVariable(’comparison.left’, element)

return element
}

As soon as the panel with the related path pattern is activated, it shows the content which

has been stored as the session variable by means of the action script.

When accessing a bookmark link by typing it into the browser input line, the configuration

principle "vice versa" comes into account:

1. The apropriate path pattern is determined

2. The concerning panel is being activated and, if applicable, is being equipped with an

element for indication. The indication of element itself is defined by the parameter

rules.

3. Panels, which are linked by parameters, are activated as well. If applicable, the element

is indicated additionally according the parameter rules.

4. The activation chains (see chapter about panel activation) are executed and the applica-

tion is visible in the desired state.

Technical Handbook 5.8

411/488

Hint: Dialogs can be addressed by means of the previously described mechanism as well.

When defining the path pattern for dialogs, it is important that both the content of the dialog

panel and the content underneath the dialog panel is defined by the bookmark link. This can

be done by linking of a parameter with a panel of the main window panel.

3.7.3 In-app navigation with bookmarks

By means of the in-app navigation with bookmarks, an action-based navigation can be real-

ized alternatively by using web links (panels are activated by an action and/or by exchange of

content between panels).

In this case, functionalities of the browser like "open in new tab" / "open in new window" are

available for the user. Furthermore, search engines can follow and index these links.

The definition is simply done by linking the action to the desired path pattern. If the pa-

rameter construction shall not (only) be executed by the element of the action, this can be

adjusted by means of the script "Parameter construction".

3.8 Plugins

In order to make the following plugins applicable, they need to be activated for the options

request of the ViewConfiguration mapper. At the REST service configuration of the VCM, a

detail editor provides the options:

Technical Handbook 5.8

412/488

Note: After selection of the required plugins, both REST service and ViewConfiguration must

be updated/rebuilt.

3.8.1 vcm-plugin-calendar

The vcm-plugin-calendar can be used to display data in a calendar.

In order to display the data as a calendar, it is necessary to add a style element containing

the calendar renderMode to the table configuration. The value under Number of rows (page

size) specifies the maximum number of calendar entries that can be shown per view (in this

case per month). The table must contain the following columns:

Technical Handbook 5.8

413/488

• start: A date with which the calendar entry begins.
• end: End date of the entry (optional)
• title: The title of the entry
• allDay: Boolean value that specifies whether the entry applies to the whole day (op-
tional)

• Further options for columns can be found in the fullcalendar.io Event_Object documen-
tation.

It is also possible to configure a select action for the columns of the table. This action is then

executed when a calendar entry is clicked.

In addition, the vcmPluginCalendarOptions style attribute can be used to make additional

configurations.

Further information on the plugin can be found at fullcalendar.io.

3.8.2 vcm-plugin-chart

The vcm-plugin-chart is used to display data from a table configuration on the web front-end

in the form of a chart. Various chart types are available: Line, bar, pie, ring and radar charts.

Example of a bar chart:

Example of a pie chart:

Technical Handbook 5.8

414/488

Configuration example for pie chart:

1. Create a script generated view.

2. Important: For viewType, enter "chart".

3. For the script generated view, create a new script.

The following script snippet shows a generic example for a pie chart with black border color.

It displays the attributes of an attribute array, using their value and type name for showing

the amount and a label:

function customizeView (element, view) {
var dataEntries = [...] // Array of numerical values or attribute values (float or integer)
view.chartData = {

// static data
datasets: [{

data: [],
backgroundColor: [], // array of hexadecimal color strings if number of values is static
borderColor: ’#000’ // hexadecimal string for border color

}],
labels: []

}

dataEntries.forEach(function (entry) {
view.chartData.datasets[0].data.push(entry.value()) // if dataEntries is an array of attributes
view.chartData.datasets[0].backgroundColor.push() // entry-spcific color
view.chartData.labels.push(entry.type().name() + ’: ’ + entry.value())

})
view.type = ’pie’
return view

}

4. Add a new style to the script generated view with renderMode "chart" and vcmPluginChart-

Type "pie". For vcmPluginChartWidth and vcmPluginChartHeight, specify width and height for

the chart (values in pixel).

Technical Handbook 5.8

415/488

5. Optional step: For the style, specify a vcmPluginChartOptions script for legend placement

and resizing behavior:

function additionalPropertyValue(element) {
var value = {legend: {position: ’right’}, maintainAspectRatio: false}
return value

}

3.8.2.1 Configuration

To generate a chart, it is necessary to create in a table configuration a style with the “chart”

option as its renderMode.

If, for example, you add an action with the “Display graphically” option to the underlying table

configuration, you can then display the relevant data record additionally in the Net-Navigator

by clicking on parts of the chart.

The plugin uses chart.js to generate the charts.

For vcm-plugin-chart there are multiple options for display adjustment that can be defined

by means of styles:

• vcmPluginChartDataColumns:
String with column numbers that are used as the data source. Default: columns 1-n

• vcmPluginChartDataMode:
’rows’ or ’columns’. Default: ’rows’

• vcmPluginChartHeight:
Specification of chart height in pixels. Default: ’auto’

• vcmPluginChartWidth:
Specification of chart width in pixels. Default: ’auto’

• vcmPluginChartLabelColumn:
Column number for labels. Default: 0

• vcmPluginChartOptions:
Options for adapting how keys are displayed and axes are scaled; they are transferred

to chart.js.

• vcmPluginChartType:
Specification of the chart type: line , bar , horizontalBar , radar , pie or doughnut .

Default: ’line’

The following example shows how to use a script for vcmPluingChartOptions in order to

disable the chart legend while scaling the axis to units of the size 1 and setting the axis origin

to 0 instead of 1:

function additionalPropertyValue(element, context) {

return {

legend: { display: false },

scales: { yAxes: [{ ticks: { stepSize: 1, beginAtZero: true } }] }

Technical Handbook 5.8

416/488

}

}

3.8.2.2 Configuration on basis of a scriptgenerated view

Charts can be display instead of tables using a script-generated view as well.

The prerequisite for this is that “chart” must be specified as the “viewType” in the configura-

tion tab of the script-generated view.

Furthermore, as is the case for the table configurations, a style must be assigned that uses

the property vcmPluginChartType to specify the preferred chartType (line’, ’bar’, ’radar’, ’pie’

or doughnut.’ Default: ’line’).

The following is an example script that counts jobs according to their status and shows the

set in a pie chart. Note that this script is an example of the “pie” chart type. Use the doc-

umentation for the chart.js to define the differences in the data formats of the other chart

types: https://www.chartjs.org/docs/latest/

function customizeView(element, view) {
var taskCount= $k.Registry.type(“job").allInstances().reduce(function (result, job, index) {

var status = job.attributeValueString(“statusJob");
result[status]= (result[status]||0)+1
return result;

}, {})

view.chartData = {
datasets: [{

data:Object.keys(jobsCount).map(function(key) {return jobsCount[key]}),
backgroundColor: [’red’, ’green’]

}],
labels: Object.keys(jobsCount)

}

view.type = ’pie’

return view;
}

This pie chart was generated using a script that uses the chart.js plugin.

3.8.3 vcm-plugin-html-editor

Web front-end

The vcm-plugin-html-editor makes it possible to edit HTML-formatted text. For this purpose

it uses the summernote WYSIWYG editor.

Technical Handbook 5.8

417/488

Configuration

For the configuration, a property view for a string attribute is needed, which has a style con-

figuration with renderMode "htmleditor". To make the content editable in the web frontend,

the properties configuration needs to be embedded in an edit configuration. Otherwise, the

attribute text is rendered as HTML without editor.

Technical Handbook 5.8

418/488

3.8.4 vcm-plugin-maps

The map plugin makes it possible to embed a map in the front-end. For this purpose the

objects to be displayed must have an attribute of the “geographical position” type.

The map can be configured as a script-generated view or as an object list.

For use via object lists, a style with the “maps” renderMode is applied to the “Table” tab in a

table view.

Columns are used to further configure the map. The columns with the labels “mapsLabel”

(contains the name of the object) and “mapsCoordinates” (contains the attribute with the

geographical coordinates) are obligatory because they are used to determine the objects for

display and its coordinates. Please note that this exact label must be used.

Optional columns and functions:

• “mapsPopup” - ensures that a pop-up with the contents of this column is called up when

Technical Handbook 5.8

419/488

the icon is clicked (accepts html). If a selection action is available, this column is deacti-

vated.

• “mapsTooltip” - displays the configured property as a tooltip.
• “mapsColor” - determines the color of the marking element on the map.
• “mapsIconLocator” - by default the icon of the type is used to display the objects on the
map. Here adjustments are possible by specifying a different icon location in the form

of the ID of the corresponding file attribute.

A selection action can be applied to the table; this action is activated when the marking

element is clicked.

3.8.5 vcm-plugin-markdown

The HTML output enabled by the VCM Markdown plug-in makes it possible to output Mark-

down texts.

It can be used by adding a style with the render mode markdown to one of the following

configuration elements:

• Static text: The Viewconfig property text of the configuration element is interpreted as
markdown.

To use the plug-in, the render mode called "markdown" must be entered on the “Style”

tab:

Technical Handbook 5.8

420/488

• Property: This has the effect that the value of the attribute is interpreted as markdown.

The view for the string attribute “Markdown” is configured using a property view:

Technical Handbook 5.8

421/488

Like a text object, the property also receives the render mode “markdown.”

After rendering, the text has the following visual highlights in the web front-end:

Further configuration of the plug-in is possible via the style attribute vcmPluginMarkdownOp-

tions.

The plug-in uses the module markdown-it

3.8.6 vcm-plugin-timeline

Events can be displayed chronologically on a timeline using the vcm-plugin-timeline plugin.

The timeline can be horizontal or vertical. The horizontal variant of the timeline provides two

additional buttons for scrolling when the timeline is wider than the space available. A scroll

bar should be provided by the browser for the vertical variant in this case.

Technical Handbook 5.8

422/488

3.8.6.1 Configuration

First, a “script generated view” has to be created and its view type attribute must be set to

“timeline.” In addition, a script must be placed on the view which provides data for the time-

line, for example:

function customizeView (element, view) { //other content
view.options = {
layout: ’horizontal’,
// layout: ’vertical’,
itemHeight: 130

}
view.events = element.relationTargets(’hasAlbum’).map(function (album) {
var obj = {}
var name = album.name()
var date = album.attributeValue(’releaseDate’)
if (date) { date = date.toString() } else { date = ” }
return obj = {name: name, date: date, elementId: album.idString()}

})
return view

}

This script can be used with the following parameters under view.options in order to modify

the appearance of the timeline:

• ’layout’: determines the direction of the timeline, either ’horizontal’ or vertical.’
• ’itemHeight’: Height of the elements on the time bar in pixels. If this is not set, all

elements receive the height of the element that requires the most space.

Under ’view.events’ an array has to be created which contain the results as objects. Each of

these requires the attributes name,’ ’date’ and elementId.

3.8.6.2 Styling

CSS rules are used to modify the default style of the timeline.

Depending on the alignment configured for the timeline, the following class hierarchy is avail-

able for this:

The text fields for the results can be modified using the following selectors:

.timelineVertical ul li

.timelineHorizontal ul li

The mark points for the results can be modified using the following selector:

.timelineVertical ul li::after

.timelineHorizontal ul li::after

3.8.7 vcm-plugin-page

Technical Handbook 5.8

423/488

3.8.8 vcm-plugin-net-navigator

The vcm plugin Net-Navigator visualizes elements in a graph-like view.

3.8.8.1 Configuration

The plugin can be configured by means of styles.

Styles of the view

Style Description

vcmPluginNetNavigatorOp-

tions

A JSON object for the view options. See below for details

extra Alternative to vcmPluginNetNavigatorOptions

Options

Option Description

vcmPluginNet-

NavigatorOp-

tions.categories.hideLabel

Show/hide category labels

Technical Handbook 5.8

424/488

vcmPluginNet-

NavigatorOp-

tions.categories.embeddedActions

Configure where actions are to be displayed. For true, they

are shown next to the categories

vcmPluginNet-

NavigatorOp-

tions.categories.compactActions

Combine actions in a menu

vcmPluginNet-

NavigatorOp-

tions.history.enabled

Activates/deactivates the navigation history

vcmPluginNetNaviga-

torOptions.enableEditing

Activates/deactivates the option of creating new links be-

tween elements in the graph

vcmPluginNetNaviga-

torOptions.nnOptions

Options for the Net-Navigator component

vcmPluginNet-

NavigatorOp-

tions.nnOptions.overload.maxExpandNodes

Number of nodes that can be opened simultaneously before

a query dialog regarding the relations to be opened appears.

The default value is 5.

Styles of nodes

ex-

tra

A JSON object for the node options. See below for details

Node options

color Overwrites the background color of the node

label Overwrites the label of the node

icon Overwrites the icon of the node

Styles of borders

ex-

tra

A JSON object for the border options. See below for details

Border options

color Overwrites the background color of the border

Technical Handbook 5.8

425/488

label Overwrites the label of the border

3.8.8.2 Actions

Nodes and relations can be supplemented with actions. These are arranged in a circle around

a node or the relations.

Actions are configured in the graph configuration within a node category or link.

Preconfigured actions

Action

type

Description

NN-

Expand

A small plus symbol can be used to display neighboring nodes (for which a con-

figuration exists)

NN-

Hide

Hide a node

NN-

Pin

Pin a node

Technical Handbook 5.8

426/488

Custom actions

A symbol image is always required for the display

3.8.8.3 Followups

The graph view reacts to the following follow-ups:

Follow-

up

Data Description

graph-

show

{elementId:

["ID123_456"]}

Displays the elements in the graph. Elements already dis-

played are hidden

graph-

join

{elementId:

["ID123_456"]}

Adds the elements to the graph. Elements already dis-

played are retained

graph-

hide

{elementId:

["ID123_456"]}

Removes elements from the graph

graph-

back

Moves one step back in the graph history

graph-

forward

Moves one step forward in the graph history

graph-

reload

Updates the elements in the graph.

Example: ActionResponse script which adds the root term to the graph view:

function actionResponse (element, context, actionResult) { var actionResponse = new $k.ActionResponse()

actionResponse.setFollowup(’graph-join’)
actionResponse.setData({
elementId: [$k.rootType().idString()]

})
return actionResponse

}

3.9 Special configuration

This chapter covers specific application cases in the ViewConfiguration Mapper which require

a combination of viewconfig element, search and/or script.

3.9.1 Switching language of web frontend

Note: This cuntionality is available for the VCM after Version 11.0.0.

For switching the UI language, there are two possibilities available:

1. By means of an action with a configured Script (ActionResponse) and a followup "switch-

language":

Technical Handbook 5.8

427/488

function actionResponse(element, context, resultModel) {
var actionResponse = new $k.ActionResponse();

actionResponse.setFollowup(’switch-language’)
actionResponse.setData({
language: ’en-US’

})

return actionResponse;
}

2. By means of the query parameter "lang". Examples:

• http://localhost:8815/viewconfig?lang=en
• http://localhost:8815/viewconfig/random/bookmark/path/?lang=en-US
• http://localhost:8815/viewconfig/bookmark/with/query?bookmarkParam1=value&lang=de_DE

In both cases, the "lang" parameter / "language" must be in the format of the Accept-

Language Language Directive.

3.9.2 Display change history in a web frontend

Prerequisite:

• Change history recording has been set up:
For changes to elements to be recorded, it is necessary to set up a meta-attribute with

the internal name “changeLog” of the “string” value type. See also the “ChangeLog Trig-

ger” chapter.

• The table as described in the following needs to be placed within a panel which gets the
changeLog attribute in forms of a domain model (context element). Note: Using the

table within a Query View or a Search result View will not work.

• If the table needs to be placed within a grouping view, the domain model needs to be
changed to the changeLog attribute. To do so, the table must be linked to the grouping

view via the relation "subconfiguration of" and the relation needs a "Script for domain

model" which returns the changeLog attribute (not its value).

View configuration

The view configuration of ChangeLog entries for the web front-end can be implemented in

the form of a table via ViewConfiguration Mapper:

Technical Handbook 5.8

428/488

From the change history it is possible to read out values such as date, change, affected ele-

ment, modified properties etc.

For each of these values, it is necessary to create a column configuration that contains a script

as its column element. The script processes the entries as per the $k.HistoryChangeLogEntry

class and returns the relevant value, filtered by value type, for the column element (for syn-

tax, see JavaScript API). For script examples see the sections below.

As only one attribute element is generated for each semantic element of the ChangeLog

attribute type to be logged, all entries in the change history are written to the string as an

attribute value. Therefore, the entries of the string must be read out individually by means

of the script. To ensure that the entries are even available, it is necessary to activate (tick) the

“Use hits” option. For more information, see the “ Hit content model” chapter.

Please note:

1. In the view configuration, the ChangeLog entries can be handled like the “hits” for a

query. If the “Use hits” option is not activated, the semantic element is output with-

out properties and without the corresponding ChangeLog entry (result: as many empty

column elements as there are ChangeLog entries).

2. To ensure that the view configuration of the table is told for which attribute the ChangeLog

entries should be displayed, influence from another view is required, on the basis of

which the context element is forwarded to the table.

The output table in the web front-end looks like this:

Technical Handbook 5.8

429/488

In this example, an object called “Roadster” has been created, a relation has obtained the

“has equipment” relation for the “Folding top” object, and then the object has been renamed

“Cabriolet”. Due to the script, each row in the “Object” column displays the current name of

the object that was modified.

Script examples for the ChangeLog output

Change date

function cellValues (logEntry, queryParameters) {
return [convertToLocal(logEntry.timestamp())]

}

function filter (elements, queryParameters, columnSearchValue) {
return elements

}

function convertToLocal (date) {
return new $k.DateTime(date.valueOf() + (date.getTimezoneOffset() * 60 * 1000))

}

Change

function cellValues (logEntry, queryParameters) {
return [logEntry.eventTypeString()]

}

function filter (elements, queryParameters, columnSearchValue) {
return elements

}

Object

function cellValues (logEntry, queryParameters) {
return [logEntry.topic() && logEntry.topic().name()]

}

Technical Handbook 5.8

430/488

function filter (elements, queryParameters, columnSearchValue) {
return elements

}

Property

function cellValues (logEntry, queryParameters) {
if(logEntry.propertyType()) {

return [logEntry.propertyType().name()]
} else {

return []
}

}

function filter (elements, queryParameters, columnSearchValue) {
return elements

}

Value

function cellValues (logEntry, queryParameters) {
var oldValue = logEntry.oldValue()
if (!oldValue) { oldValue = ” } else if (oldValue.length > 100) {

oldValue = oldValue.substr(0, 100) + ’...’
}
var newValue = logEntry.newValue()
if (!newValue) { newValue = ” } else if (newValue.length > 100) {

newValue = newValue.substr(0, 100) + ’...’
}
return [oldValue + ’ ’ + newValue]

}

function filter (elements, queryParameters, columnSearchValue) {
return elements

}

3.10 Installation

The ViewConfig Mapper is a web frontend application for the Knowledge Graph and it can be

provided for use as follows:

• Make ViewConfiguration Mapper available as a ZIP file via static REST resource
• Reference to VCM demo with sourcing option (link)
• Using (other) web server

Technical Handbook 5.8

431/488

• Productive operation/test operation

3.10.1 Configuration of web servers

The View Configuration Mapper (VCM) running in the browser internally requires knowl-

edge of parameters for its functionality. If you are connecting directly to a bridge delivering

VCM contents and its REST services, the VCM running in the browser is capable to derive the

parameters from its first invocation.

On the other hand, if you want to run the bridge oder bridges behind some reverse proxy

infrastructure (as it it common e.g. in cloud projects, with load-balancing or running multiple

services behind a single virtual hostname), the services very often are not located on the root

path of the URL used in the users browser.

The parameters are also relevant, if the installation is different from the defaults mentioned.

The parameters are:

Pa-

ram-

e-

ter

name

Description Default

value

iv-

root-

url

The entry point of the bridge. Either a URL with schema, host and

port or an absolute path. Examples:

• http://localhost:8815
• https://localhost:8815
• https://i-views.com/myproject/x/y
• /myproject/x/y

/

iv-

path-

viewconfig

Absolute or relative (to iv-root-url) path to the viewconfig service for

this frontend. Examples:

• viewconfig/
• my-service/
• /myproject/x/y/service

Path of the

service be-

longing to

the request

iv-

path-

bookmarks

Absolute or relative (to iv-root-url) path from which the bookmark

URLs are formed.

<iv-path-
viewconfig>

Technical Handbook 5.8

432/488

iv-

path-

static

Absolute or relative (to iv-root-url) path to the static resources. Ex-

amples:

• viewconfig/viewconfigmapper
• viewconfig/my-statics
• my-service/viewconfigmapper
• /static/

<iv-path-
viewconfig>/viewconfigmapper

iv-

cookie-

path

defines the path scope of the authzentication cookie <iv-path-
viewconfig>

iv-

secure-

cookies

Determines if the secure flag should be set for cookies. Possible

values: true or false

false

Usually some kind of frontend web-server with reverse proxy capabilities is used, like Apache,

nginx, Traefik, etc. In that servers configuration you can add directives to send the parame-

ters as headers to the bridge, which will deliver them back to the VCM.

3.11 Extension project

3.11.1 Development environment

• Node.js/Webpack/etc.

3.11.2 Technical details

• Diagram showing information flow in the case of actions
• Component state

4 i-views services

4.1 General

4.1.1 Command line parameter

If there is also an entry in the ini file for a call parameter, then the call parameter has a higher

priority.

-inifile <File name>, -ini <File name>

Name of the ini file that is used instead of the default ini file.

The name of the default ini-file depends on the tool-type, e.g. a standard KnowledgeBuilder

will be named "kb.exe" (or "kb.im" respectively), so by default it will search for "kb.ini" as

Technical Handbook 5.8

433/488

ini-file. Please keep in mind, that renaming the file will not change the name of the default

ini-file a tool is looking for.

4.1.2 Configuration file

Some settings can be specified by means of a configuration file (*.ini) . The structure of the

file is as follows:

[Section]
parameterName1=parameterValue1
parameterName2=parameterValue2
...

Below is a list of configurations that can be used for any service. For service-specific settings,

see the “configuration file” section of the relevant service.

Logging settings

loglevel = <LogLevel>

Configures the messages that should appear in the log:

• FATAL ERROR: Critical error messages only
• ERROR: Error messages only
• WARNING: Warnings and error messages only
• NORMAL (default value): All messages excluding debug outputs
• NOTIFY: All messages including several debug outputs
• DEBUG: All messages including all debug outputs

debug = true/false

Obsolete. Sets the log level to DEBUG for true, and to NORMAL for false. Only evaluated if

logLevel is not set

nolog = true/false

Obsolete. If true, logTargets=null. Only evaluated if logTargets is not set

channels = <Channel1> [,<Channel2>,...]

Names of channel filters. Channel filters are used to output only the log messages belong-

ing to the specified channel filters. The name of a channel filter indicates the topic area

to which the log outputs belong. To find out which channel filters are possible, use the -

availableChannels parameter in the command line.

channelLevels = <Channel1>:<Level1> [,<Channel2>:<Level2>,...]

Targeted configuration of the log level for the respective channel.

Technical Handbook 5.8

434/488

logTargets = <Name1> [,<Name2>,...]

Names of log targets. For the configuration, see the “Log targets” section.

logprefix = <Prefix1> [, <Prefix2>,...]

Additional data that are added for each log output:

• pid : Process ID of the application
• $proc$: ID of the current Smalltalk thread
• $alloc$: allocated memory on the VM (in megabyte)
• $free$: Free memory on the VM (in megabyte)
• $incGC$: Status of incremental GCs
• os : Information about the OS
• cmd : Command line
• $build$: Build version
• $coast$: COAST version

If the prefix is not contained in this list the prefix is output without change.

logTimestampFormat = <FormatString>

Formatting specification for the timestamp of the log entry, e.g. “hh:mm:ss”.

exceptionLogSize = <Integer>

Sets the maximum size for the StackTrace supplied with an error message.

Log targets

Log targets can be used to specify different targets for logging; it is possible to configure the

log level, channels, formatting and more for each of them. For each specified name from the

log targets list, a configuration must be specified in section [<configuration name>]

[Default]
logTargets=erroroutput

[erroroutput]
type=stderr
format=json
loglevel= ERROR

is an example that configures the output of all error messages in the JSON format in the

standard error stream.

The null log target is an exception: if logTargets=null is configured, no configuration section

needs to be created. If this section is missing, this has the same significance as the following

configuration

[Default]
logTargets=null

Technical Handbook 5.8

435/488

[null]
type=null

It is however possible to use null as the identifier for any log target configuration.

Generally it is possible, just as in the general configuration, to specify loglevel, debug, chan-

nels, channelLevels, logprefix and logTimestampFormat (see above). The configuration of the

log target always takes precedence; if none is specified, the general configuration is used.

In addition there are several other configuration options:

format = <Format>

Specifies the output format. Possible values:

• plain: Standard formatting in machine-readable form if possible
• json: Single-line output as JSON string, above all for machine processing

type = <Target type>

Specifies the type of the output. This configuration MUST be specified, otherwise the log

target is ignored. The following section contains the description and other configuration

options for the different types:

file

Output in a log file.

file = <File name>

Specifies the file name of the target file.

maxLogSize = <size>

The maximum size of the log file before the old log file is archived and a new one is written.

For values below 1,024, the output is to be understood in MB.

maxBacklogFiles = <amount>

Themaximum amount of archived log files. When a new one begins the oldest one is deleted.

transcript

Output to the transcript, can also be redirected to a log file and therefore accepts the same

configuration as file.

stdout

Output to the standard out stream.

stderr

Output to the standard error stream.

mail

Sends the log output via email.

[errorMail]

Technical Handbook 5.8

436/488

type = mail
loglevel = ERROR
;Sender address:
sender = mail@example.org
;Recipient address:
recipient = rec@example.org
;Mail server:
smtpHost = stmp.example.org
;Port of the mail server:
smptPort = 465
;If true, activates the secured connection (TLS/SSL).
;If true, the username and password must have been set.
tls = true
username = mail@example.org
password = 12345abc
;Amount of attempts to resend the email in case of failure:
retries = 3
;Waiting time between the attempts in seconds:
retryDelay = 5

mailfile

Like mail, however the outputs with a low log level are first collected and only sent via email

when an entry with a high level is logged.

mailSendLevel = <LogLevel>

Sets the log level from which the email is sent.

syslog

Output as UDP datagram to a syslog client.

format = <Format>

Unlike with other log targets, json and plain are not supported as format; instead, the syslog

version can be specified here:

• rfc5424: Formats the message as per RFC 5424. Most data are placed in the structured
data field in structured form. Only the actual log message is transmitted in the message

field .

• rfc3164: Formats the message as per RFC 3164. As this standard has no structured
data field, the corresponding data are placed at the beginning of the message field in

the same formatting. Please note: The timestamp is specified in the local time of the

sending computer as per the standard.

facility = <Integer>

The facility as an integer. For detailed information see https://tools.ietf.org/html/rfc5424#section-

6.2.1

targetHostname = <Hostname>

The host name of the target system. If not specified, localhost is used.

Technical Handbook 5.8

437/488

targetPort = <Integer>

The target port. If none is specified, the syslog standard port 514 is used.

hostname = <Hostname>

The host name of the sender. If none is specified, the host name of the system is read out.

appname = <Name>

Name of the sending application. If none is specified, the name of the EXE is used.

maxMessageSize = <Integer>

The maximummessage size in bytes. If none is specified, the maximum size for UDP is used.

To shorten the message, structured data is removed incrementally at first, and the message

is cut off if necessary. The message remains in the valid syslog format even after shortening.

null

For suppressing the log outputs. No options are read out.

4.1.2.1 Text extraction

To extract texts and meta-data from file contents, use of Apache Tika must be set up:

• Download the current Tika app (e.g. app-1.18.jar) from thewebsite http://tika.apache.org/ and
copy it into the directory of the Job-Client.

• Add the following entry to the configuration file (e.g. jobclient.ini or bridge.ini):

[text-extraction]
tikaJavaParams=-Xmx1024M
tikaJarPath=tika-app-1.18.jar
; Optional: Maximum size of the binary files,
; for which text is extracted
; extractedTextSizeLimit=100000
;
; Optional: Java path, the default value is ’java’
; extractorPath=C:\Program Files\Java\jdk-9\bin\java.exe

4.1.2.2 Macros

Within ini files, further ini files can be included:

$(include:Dateiname).

This allows information from several files (e.g. host name) being stored into one common

file.

• in one and the same line, the include instruction mustn’t be surrounded by further con-

Technical Handbook 5.8

438/488

tent; otherwise, the include instruction will not be recognized

• include corresponds to a textual replacement
• include can be nested: the included file turn may include further files
• the file name may consist of path specifications; within Windows, slashes / will be re-
placed by backslashes \ automatically

Including environment variables is possible as well:

$(env:Variablenname)

"$(env:USERDNSDOMAIN)" is translated into "I-VIEWS.COM" for example.

Note: This macro only can be used in key values, for categories / key names it will not be

replaced.

Example:

jobclient.ini $(include:../shared/ivcontent-host.ini) $(include:../shared/ivcontent-volume.ini) jobPools=lucene, KLuceneAdminJob [JNI] classPath=... bridge.ini $(include:ivcontent-host.ini) [KHTTPRestBridge] $(include:ivcontent-volume.ini) port=8815 ../shared/ivcontent-host.ini host=$(env:COMPUTERNAME).$(env:USERDNSDOMAIN) ../shared/ivcontent-volume.ini volume=ivcontent-master

4.1.2.3 HTTP Proxy configuration

Depending on the network infrastructure HTTP connections from machines are not directly

possible, but need to use the existing HTTP proxy infrastructure in the network. By default

i-views components do not try to use such infrastructure but they can be configured to do

so.

Themost simple configuration attempts to use the operating systems configured HTTP proxy

infrastructure. To use this, add the following section to the tools ini-file:

[NetClient]
HttpClient.useProxy=true

With this configuration i-views will try to read and interpret the operating systems proxy

configuration at the next start of the tool.

In case this does not work, i-views can also be configured to explicitely use a specific proxy

setting with the following ini-snippet:

[NetClient]
HttpClient.proxyHost=HOSTNAME
HttpClient.proxyPort=PORT

The values for HOSTNAME and PORT can be obtained either by the network administra-

tion team or users can try to read the configuration from the operating system or installed

browsers. Here some known sources are documented:

• Windows: in a PowerShell window execute

[System.Net.WebProxy]::GetDefaultProxy()
In the field "Address" you should find a hostname and port-number separated by a

colon character.

• on Windows Google Chrome and Microsoft Edge/Internet Explorer use the above Win-

Technical Handbook 5.8

439/488

dows setting.

• Firefox: Menu "Tools, Options", on page "General", item "Network Settings", entry

"HTTP Proxy"

4.1.2.4 TLS configuration

If a service provides a HTTPS interface, then a certicate for TLS must be specified in the

category [tls]. The configuration depends on the operating system.

Windows

[tls]
certificateName=MyCert

certificateName specifies the "friendly name" property of the certificate in the Windows cer-

tificate store. Note that this property is not a part of the certificate itself.

The certificate must be put in the personal certificate store of the user. This means that the

service must be run under a user account, not with the local system account.

The private key must be stored, too.

A self-signed certificate for testing can be generated with Powershell:

New-SelfSignedCertificate -CertStoreLocation Cert:\CurrentUser\My -DnsName "mycomputer.mydomain.org" -FriendlyName "MyCert" -NotAfter (Get-Date).AddYears(10)

Linux

[tls]
certificatePath=myCert.cert
privateKeyPath=myCert.key

certificatePath is the path to the certificate file. It must be stored in PEM format. privateKey-

Path is the path to the private key file. It must be stored in PEM format, without password

protection.

4.2 Mediator

4.2.1 General

The i-views server provides consistent and persistent data storage, and ensures that the data

on the i-views clients that are connected are up-to-date.

Data is managed in an object-oriented database that uses an optimistic transaction system

to allow cooperative work on the Knowledge Graph.

Functioning as a communication center, the i-views server ensures clients and services are

synchronized. As a basic mechanism, it makes a shared object space and active updates

available for this.

Technical data:

Technical Handbook 5.8

440/488

• Multi-platform executable based on the VisualWorks Smalltalk Virtual Machine (media-
tor.exe or mediator.im).

• Configurable TCP/IP server port for communication with the clients, standard in i-views
5.1 is 30064.

The i-views server can be operated in three modes:

1. Classic/Compact: The server starts as an individual process in this mode - the so-called

“mediator”.

2. Multiprocess: The server starts at least two processes in thismode. This results in higher

memory usage than in compact mode, however many jobs can be executed in parallel.

3. Distributed: The server components “stock” and “dispatcher” can be configured and

operated separately in this mode. This makes it possible to distribute the server com-

ponents across different computer nodes.

4.2.2 System requirements

The i-views server is platform-independent and runs on all popular operating systems, e.g.

Windows and Linux. Other systems on request.

OS Version Pro-

ces-

sor

Sup-

ported

64

Bit

VM

Win-

dows

All versions, servers and clients currently supported by

Windows

x86 Yes Yes

Linux RedHat, SLES, etc. (Kernel >= 2.4, glibc >= 2.5) x86 Yes Yes

Kernel >= 2.6, glibc >= 2.5 PPC No

ARM No

Mac OSX 10.9+ x86 Yes Yes

4.2.3 Operating modes

First, the following start parameters generally determine the mode in which the server is

started. Without parameters, the server starts in the compact “mediator”mode.

-stock

Starts the “Stock” server component, which is responsible for persistent data storage.

-dispatcher

Starts the “Dispatcher” server component, which is responsible for the synchronization of

the clients and for the distribution of “active updates”.

Technical Handbook 5.8

441/488

-server

Starts the complete server in the multiprocess mode.

4.2.3.1 Multi process mode (-server)

The start parameter -server automatically starts a stock and a dispatcher. The dispatcher

opens a server on the default port (30064). The port of the stock is selected automatically.

Authentication tokens between the two processes are generated automatically and do not

have to be configured.

Please note: It is important that all clients (Knowledge Builder, bridge, batch tool etc.)

have access to stock and dispatcher.

If this is only possible for certain ports, stock and dispatcher must be configured explicitly.

The local directory uses the same configuration files as the actual distributed mode

• dispatcher.ini configures the dispatcher process
• stock.ini configures the stock process

Other configuration files cannot be used at present.

4.2.3.2 Configuration of the Stock

The stock is responsible for storing the data on the hard drive. A simple is example of this is

the configuration file stock.ini

[Default]

0.0.0.0interfaces=cnp://0.0.0.0:4998

This configuration ensures that the stock listens on port 4998 and communicates via the

native Coast protocol.

The configuration file can contain the following entries:

[Default]
parameterName1=parameterValue1
parameterName2=parameterValue2
...

The following parameters can be used at this point:

port=<port number>

Starts the stock with port number <num>. Without this entry, port 30064 is used.

This parameter is obsolete. It is replaced by the “interfaces” parameter. The entry “port=1234”

corresponds to the entry “interfaces=cnp://0.0.0.0:1234.” In contrast to the start parameter,

multiple values are possible here, which can be listed consecutively in comma-separated

form.

Technical Handbook 5.8

442/488

interfaces=<interface-1>,<interface-2>,...<interface-n>

This parameter determines the addresses and protocols used to access the server. Several

values are permissible and are separated by a comma. Possible protocols are: http, https,

cnp, cnps. The abbreviation “cnp” stands for “Coast Native Protocol” or “Coast Native Protocol

Secure.” The syntactic structure of an interface definition is equivalent to a URL with schema,

host and port. The host component is used tomanage which network address(es) is/are used

to access the server. For example: “0.0.0.0”=IPv4 all interfaces, “[::1]”=IPv6 loopback only.

The “http” and “https” protocols can be rerouted via proxies, allowing the server to be ac-

cessed using an IIS running on port 443, for example.

baseDirectory=<Directory>

Sets the directory in which the “volumes” directory is located. If this value is supposed to end

on volumes, this directory is used directly without creating an additional “volumes” directory

below it.

volumesDirectory=<Directory>

The Knowledge Graphs are stored in this directory. Here, “volumes” is entered as the default

value.

backupDirectory=<Directory>

Specifies the directory to which the Knowledge Graph backups are written and also read for

restoring. Only complete directory names are allowed, no relative paths.

networkBufferSize=<Size in bytes>

This specifies the size of the buffer that is used for sending/receiving data. The default value

is 20480. In some infrastructures you can specify

networkBufferSize=4096

to achieve a higher throughput.

flushJournalThreshold=<Number of clusters>

Specifies the maximum value that “changed cluster" + “index cluster" may reach in a saving

process. If the value for “changed clusters” has already been exceeded, no “index clusters”

are saved; these are kept with the journal instead.

A low value (e.g. 50) guarantees fast saving time but can potentially generate a large journal.

A value of “0” deactivates journaling. The default value is “2000.”

Note: A “flush” of the journal is executed after complete saving at the latest. This in turn is

triggered if:

• The mediator is closed
• The last client of the corresponding volume is logged off
• Saving is triggered by a full-save job (see jobs.ini)

autoSaveTimeInterval=<Wait interval in seconds>

Specifies the maximum wait time in seconds until automatic saving takes place again after

the last cluster was saved. The default value is 15.

clientTimeout=<Timeout in seconds>

Technical Handbook 5.8

443/488

Specifies the time in seconds that a connected client may not have sent an Alive message

before the mediator regards it as inactive and excludes it.

password.flavour=190133293071522928001864719805591376361
password.hash=11199545182458660705495599802052624171734965791427080638694954247035513239844

The mediator password is calculated together with a random flavor to produce a (SHA256)

hash value. These two pieces of information then suffice for the mediator to check an au-

thentication request. During authentication on the server, the user name must be specified

as “Server.admin.” To determine these values, you can use

password.update=new_password

Trigger the server to compute a new flavor and suitable hash value and write these to the ini

file. The “password.update” entry is removed in this process.

password=<String>

The obsolete but still supported way of setting the mediator password. This variant must not

be used at the same time as the SHA256 hash variant.

Changed

skipVolumesCheck=<true|false>

Specifies whether the check of the existing volume that is normally performed after starting

the mediator is skipped

Changed

Logging settings:

For the configuration options for logging, see the logging settings in Chapter 11.1.2 Configu-

ration file.

Memory settings:

The following three parameters are used to configure the memory allocation and usage. You

may specify values either in megabytes or actual bytes, whereby it is assumed that values

under 1048576 refer to megabytes.

maxMemory=<Integer, in MB>

Maximum base memory usage permitted. A minimum of 50 MB, the total physical base

memory available (under Windows) or 512 MB by default.

baseMemory=<Integer, in MB>

Basememory usage after which efforts to free upmemory increase. By default 0.6 *maxMem-

ory. (alias: “growthRegimeUpperBound”)

freeMemoryBound=<Integer, in MB> [10]

If memory that is being used, but is no longer needed, exceeds this limit, it is freed up for use

again.

Technical Handbook 5.8

444/488

BLOB service configuration

If the mediator is supposed to be started with an integrated BLOB service so that the BLOBs

are stored separately from the database on the hard drive, the following setting must be

entered in the “mediator.ini” file:

startBlobService=true

For more information on this, refer to the documentation of the BLOB service (see link be-

low).

4.2.3.3 Configuration of the Dispatcher

The dispatcher is responsible for transaction control and coordination of several clients. A

simple configuration file is

[Default]

interfaces=cnp://0.0.0.0:5000

stockAddress=cnp://localhost:4998
stockAuthentication=dsfkhvqw3n9485z432504

This configuration opens a server on port 5000 to which clients can connect. The dispatcher

looks for the stock under localhost:4998. This address is also the address that clients use to

fetch data from stock

If dispatcher and stock are running on the same server, the dispatcher tells its clients its own

host name to ensure connections via the network work.

Token dsfkhvqw3n9485z432504 is used to authenticate the dispatcher on the stock. This

token must be set in the stock configuration using the "password.*” keys .

4.2.4 Installation

By principle, the i-views server does not require a specific installation, i.e. it can be started

ad-hoc from any directory.

However, it must be ensured that the necessary access rights (read/write/generate) have

been set for the server s working directory and all subdirectories.

4.2.4.1 Start parameter

A range of parameters can also be transferred to the mediator process when starting. Most

parameters can, however, also be specified in the mediator.ini, allowing the mediator to

be started using a simple command line. When doing so, the rule is that the parameters

specified on the command line take precedence over any parameters specified twice in the

.ini file.

The complete list of possible start parameters is output by themediator when called up using

the parameter “-?”.

Technical Handbook 5.8

445/488

-interface <interface-1>

This parameter determines the addresses and protocols used to access the server. Possible

protocols are: http, https, cnp, cnps. The abbreviation “cnp” stands for “Coast Native Pro-

tocol” or “Coast Native Protocol Secure.” The syntactic structure of an interface definition is

equivalent to a URL with schema, host and port. The host component is used to manage

which network address(es) is/are used to access the server. For example: “0.0.0.0”=IPv4 all

interfaces, “[::1]”=IPv6 loopback only.

The “http” and “https” protocols can be rerouted via proxies, allowing the server to be ac-

cessed using an IIS running on port 443, for example.

-clientTimeout <sec>

Sets the time within which a client must automatically answer to <sec> seconds. The value
should be set to a minimum of 600 (which is also the default value).

-baseDirectory <directory>

Sets the directory in which the “Volumes” directory is located. Along with the “Volumes”

subdirectory, the directories for backups and downloads are created. This parameter used

to be called “-volumes”.

The following parameters give commands to the mediator executable to run specific jobs,

without functioning as a server for Knowledge Graph afterwards.

-quickRecover <volume> -recover <volume>

In the event that the mediator was not shut down properly (e.g. computer crash), lock files

in volumes that were in use stop running. The volume will then not be able to be entered. In

order to disable the lock, remove the lock by calling -quickRecover <volume>. It cannot be
called when (possible) inconsistencies were found. In this case, the start parameter -recover

must be used.

Please note:

The working directory called must be the directory that contains the “volumes” directory. The

“Volumes” parameter therefore does not function in this case.

-bfscommand <volume> <command>

Executes commands that are identified by the BlockFileSystem.

Command line parameter for logging:

-nolog

Disables logging

-loglevel <integer>

Configures the messages that should appear in the log:

• 0: All messages including debug outputs
• 10 (default value): All messages excluding debug outputs
• 20: Warnings and error messages only
• 30: Error messages only

-logfile <file name>, -log <file name>

Name of the log file that is used instead of the standard log file. It is important to change this

parameter when several clients are being started in the same working directory.

Technical Handbook 5.8

446/488

-debug

Switches logging to debug mode

-log <logname>

Sets the log file to <logname>.

4.2.4.2 Configuration file "mediator.ini"

A number of mediator settings can also be defined in the configuration file mediator.ini. The

structure of the file is as follows:

[Default]
parameterName1=parameterValue1
parameterName2=parameterValue2
...

The following parameters can be used at this point:

Network communication

port=<port number>

Starts the server with port number <num>. Without this entry, port 30061 is used.

This parameter is obsolete. It is replaced by the “interfaces” parameter. The entry “port=1234”

corresponds to the entry “interfaces=cnp://0.0.0.0:1234.” In contrast to the start parameter,

multiple values are possible here, which can be listed consecutively in comma-separated

form.

interfaces=<interface-1>,<interface-2>,...<interface-n>

This parameter determines the addresses and protocols used to access the server. Several

values are permissible and are separated by a comma. Possible protocols are: http, https,

cnp, cnps. The abbreviation “cnp” stands for “Coast Native Protocol” or “Coast Native Protocol

Secure.” The syntactic structure of an interface definition is equivalent to a URL with schema,

host and port. The host component is used tomanage which network address(es) is/are used

to access the server. For example: “0.0.0.0”=IPv4 all interfaces, “[::1]”=IPv6 loopback only.

The “http” and “https” protocols can be rerouted via proxies, allowing the server to be ac-

cessed using an IIS running on port 443, for example.

For SSL communication (cnps:// or https://), the file paths for certification and private key

must also be specified in the configuration file:

certificate=name of the .crt file privateKey=name of the .key file

Directories

baseDirectory=<Directory>

Sets the directory in which the “volumes” directory is located. If this value is supposed to end

on volumes, this directory is used directly without creating an additional “volumes” directory

below it.

volumesDirectory=<Directory>

The Knowledge Graphs are in this directory. volumes is entered as the default value at this

position.

Technical Handbook 5.8

447/488

backupDirectory=<Directory>

Specifies the directory to which the Knowledge Graph backups are written and also read for

restoring. Only complete directory names are allowed, no relative paths.

networkBufferSize=<Size in bytes>

This specifies the size of the buffer that is used for sending/receiving data. The default value

is 20480. In some infrastructures, you can specify

networkBufferSize=4096

to achieve a higher throughput.

journalMaxSize=<Maximum size of the journal>

journalMaxSize=0 can be used to deactivate journaling, which is normally active. The default

value is 5242880 (5 MB).

autoSaveTimeInterval=<Wait interval in seconds>

Specifies the maximum wait time in seconds until automatic saving takes place again after

the last cluster was saved. The default value is 15.

clientTimeout=<Timeout in seconds>

Specifies the time in seconds that a connected client may not have sent an Alive message

before the mediator regards it as inactive and excludes it.

password.flavour=190133293071522928001864719805591376361
password.hash=11199545182458660705495599802052624171734965791427080638694954247035513239844

The mediator password is calculated together with a random flavor to produce a (SHA256)

hash value. These two pieces of information then suffice for the mediator to check an au-

thentication request. During authentication on the server, the user name must be specified

as “Server.admin.” To determine these values, you can use

password.update=new_password

Trigger the server to compute a new flavor and suitable hash value and write these to the ini

file. The “password.update” entry is removed in this process.

password=<String>

The obsolete but still supported way of setting the mediator password. This variant must not

be used at the same time as the SHA256 hash variant.

Changed

skipVolumesCheck=<true|false>

Specifies whether the check of the existing volume that is normally performed after starting

the mediator is skipped

Logging

For the configuration options for logging, see the logging settings in Chapter 11.1.2 Configu-

ration file.

Working memory

The following three parameters are used to configure the memory allocation and usage. You

Technical Handbook 5.8

448/488

may specify values either in megabytes or actual bytes, whereby it is assumed that values

under 1048576 refer to megabytes.

maxMemory=<integer, in MB>

Maximum base memory usage permitted. A minimum of 50 MB, the total physical base

memory available (under Windows) or 512 MB by default.

baseMemory=<integer, in MB>

Basememory usage after which efforts to free upmemory increase. By default 0.6 *maxMem-

ory. (alias: “growthRegimeUpperBound”)

freeMemoryBound=<integer, in MB> [10]

If memory that is being used, but is no longer needed, exceeds this limit, it is freed up for use

again.

BLOB service configuration

If the mediator is supposed to be started with an integrated BLOB service so that the BLOBs

are stored separately from the database on the hard drive, the following setting must be

entered in the “mediator.ini” file:

startBlobService=true

For more information on this, refer to the documentation of the BLOB service (see link be-

low).

4.2.4.3 Security concept of the Mediator

The i-views server is a generic component that can be used for more than i-views. Along with

the restrictions due to authentications on the server or in the database, the user can also

control which applications may connect to it.

Each application (client and server) receives a pair of RSA keys that is unique for each ap-

plication delivered. The public key can be obtained by using the information (KB: “Tools”

menu, “Information”, then the “Copy RSA key” button) or be called up using the parameter

-showBuildID for console applications. The build information exported this way includes the

public RSA exponents (rsa.e_1) and RSA module (distributed across several rsa.n_X) and an

MD5 checksum for this information (buildID).

Example of build information:

[buildID.90A1203EFB957A58C2268AD8FE3CC5A3]
build=Build 00010101
rsa.n_1=93D516DF61395258AA21A91B33E8EE67
rsa.n_2=B07C6FC5023DBB18F2201CF723C8F5DD
rsa.n_3=78941FB7C10D20988FEDFC6BD02CF3B7
rsa.n_4=E4567751843C38F055ED791AA7505278
rsa.n_5=23D94BB9EAB2E23F21DBEAA3DD2D2776
rsa.n_6=CE8B81564645DA85C85E9A78BB6E6B41
rsa.n_7=28A646D4868C38E00AE4810601B1EE9F
rsa.n_8=4FF5C35F873E6ED4F65F0FE8B4B45307
rsa.e_1=010001

If you would now like only a specific set of client applications to be able to connect to the

server, then youmust transfer the respective sections into the mediator.ini in the server. The

client transfers its buildID when it connects. When the mediator receives a suitable entry, it

Technical Handbook 5.8

449/488

authenticates the client. In other cases, it will only connect when there are no entries on

build information in its ini file. This, for example, prevents outdated client applications or

modified client applications from being able to connect to the mediator.

Conversely, corresponding buildIDs for the mediators can be entered in the respective ini file

in the client application in order to prevent a compromised or outdated server from estab-

lishing a connection.

This allows an environment to be configured in which only the latest software can be used

to access productive data, but also allows access to the server with the test data from a

development environment. The user software, in turn, can only access the productive server

or the test server.

If neither the server nor the client is configured, then the installation performs the same

way as the predecessor version: Each application can connect to any server (as long as the

protocol version is correct).

Server version 5.4 or higher requires the server password as a parameter in order to run

administrative commands (by means of the Rest interface or by means of the administration

using an administration tool). An authentication as the administrator in the volume has been

sufficient since version 6.2 for actions that relate to an existing database (backup, download,

garbage collection, etc.).

Conversely, it is possible to log into a volume using the server password. Details of this can

be found in the Admin tool.

If no password has been configured on the server, then any password can be used to log

onto the server. However, logging in on the volume is then not possible.

4.2.4.4 Audit log configuration

In a number of application scenarios, it may be necessary to log all accesses to a Knowl-

edge Graph in an access or audit log. This audit log contains entries for all log-in and log-out

processes, write and read access to Knowledge Graph contents, search requests made, print-

outs, exports, etc.

The log must be activated in the System configuration / Audit log category in the Admin tool.

The activation or deactivation of the log, in turn, results in a entry in the audit log.

An analysis tool can be opened in the administrator menu of the Knowledge Builder to view

and search within the access log.

The log can be configured by creating a file named ’log.ini’ in the data directory of the volume.

This configuration file is only read when the volume is opened. If the configuration was

changed while the volume was opened, then the Mediator has to be restarted.

[Default]
; A comma-separated list of log names. The log is configured in the section with the same name.
applicationLog=audit

[audit]
; Create a compressed backup every 28 days and start with a new empty log
backupInterval=28
; Max size of a JSON file, in MB
maxLogSize=5
; Do not flush the log immediately, for better performance

Technical Handbook 5.8

450/488

writeBackImmediately=false

4.2.5 Operation

4.2.5.1 Shut down the server

The i-views server can be shut down locally by means of the Ctrl-C abort signal.

In case of installation as a Windows service, the server must be stopped using the service

management.

Under UNIX and if operated as a Windows service, the server is shut down properly when the

operating system is shut down.

4.2.5.2 Storage and backup of Knowledge Graphs

Directory structure

The basic directory of the i-views server has the following structure:

volumes/
knowledgegraphName/
knowledgegraphName.cbf
knowledgegraphName.cdr
knowledgegraphName.cfl
knowledgegraphName.lock (if the Knowledge Graph is open)

backup/
knowledgegraphName/

<ten-digit number>/
knowledgegraphName.cbf
knowledgegraphName.cdr
knowledgegraphName.cfl

Storage of Knowledge Graphs

Knowledge Graphs are stored in the file system in the “volumes” subdirectory of the basic

directory of the i-views server. In this directory, a subdirectory with a corresponding name

is created for each Knowledge Graph. A file with the .lock file extension indicates that a

Knowledge Graph is currently in use.

Backup of Knowledge Graphs

The Knowledge Graph directories must never by copied while the server is running. For this

purpose the server has a backup service, which copies a consistent state of the Knowledge

Graph to a backup area. This backup area must be backed up at regular intervals (e.g. as part

of an overall backup strategy).

The location where backups are created can be specified using the entry

backupDirectory=<directory>

in the “mediator.ini“ file. Without this information, the “backup” subdirectory of the basic

directory is used.

The backup service of the K-Infinity server can be initiated in two ways:

Technical Handbook 5.8

451/488

1. With a direct request to the server process (e.g. from the administrator tool)

2. With entries in the jobs.ini file in the working directory of the server. For each Knowl-

edge Graph, this file can contain a category [name_of_graph] with the following entries:

Example jobs.ini

[volume1]
;Backup of Knowledge Graph “volume1”

;Time the backup starts
backupTime=00:45

;Interval in days - daily in this case
backupInterval=1

;Keep the last 5 backups of this Knowledge Graph
backupsToKeep=5

backupsToKeep specifies the number of backups to be kept. This also includes backups that

were created manually. The default value is 3.

When specifying the graph names in square brackets, you can use the wildcards “*” and “?”;

the names are not case-sensitive.

4.2.5.3 Garbage Collection

Without Garbage Collection, the Knowledge Graph continues to grow through use. Hence,

it makes sense to perform a cleanup (Garbage Collection) from time to time. Like a data

backup, you can start the Garbage Collection manually at any time (e.g. with a special admin-

istrator tool) or it can be started automatically.

Depending on the size of the Knowledge Graph, the Garbage Collection might require a lot

of time and memory. When running the Garbage Collection in large Knowledge Graphs, we

recommend starting it without connected clients (e.g. Knowledge Builder and Job-Clients)

and without other active processes (e.g. backup).

Automatic Garbage Collection: Structure of the jobs.ini file

Automatic Garbage Collection is configured through an entry in the ’jobs.ini’ file, e.g.

[volume1] garbageCollectTime=00:55 garbageCollectInterval=7

This entry in jobs.ini ensures that a garbage collection in the Knowledge Graph called “vol-

ume1” is performed at “00:55” a.m. every “7” days. The default value for the interval is “1”

(i.e. daily); the time of day must be specified.

When specifying the Knowledge Graph names in square brackets, you can use the wildcards

“*” and “?”; the names are not case-sensitive.

Manual start of Garbage Collection

Alternatively, garbage collection can also be controlled via the Admin tool or by using the

mediator REST api.

Technical Handbook 5.8

452/488

4.2.5.4 Operation in Unix

In UNIX the server reacts to the following signals:

SIGTERM/SIGHUP

Shuts down the server

SIGUSR2

The server immediately begins to back up all Knowledge Graphs that are specified for backup

in the jobs.ini file (see also the section on backups).

4.2.5.5 Operation in Cluster

The mediator can be operated in a cluster. A cluster environment usually mirrors the direc-

tories and therefore the Knowledge Graph constantly. If the part of the cluster on which the

mediator is running fails, a new mediator that then manages access to the Knowledge Graph

is started automatically

If the first mediator fails, it is possible that the mediator no longer has time to make the

Knowledge Graph consistent and that the graph thus has an inconsistency and the “lock” file

of the old mediator remains in the corresponding directory. To ensure that the newmediator

is able to delete the “lock” file, the following parameter must be added to the mediator.ini

file.

host=NameOfCluster

In this case, all mediators with this ini entry can also unlock locked volumes of other medi-

ators that read the same value in the mediator.ini when started. “NameOfCluster" can be

selected freely but must comply with the rules that apply to host names (no spaces, colon, or

the like)

A consistency check of the volume is executed automatically when the mediator is started.

To the extent possible, the Knowledge Graph is made consistent and operation continues as

normal.

4.2.5.6 Troubleshooting

If the i-views server was not shut down properly during operation (e.g. computer crash), then

the locks remain in opened Knowledge Graphs. When a locked Knowledge Graph is opened,

this lock is detected and removed, if possible.

If the mediator detects an inconsistency, then the Knowledge Graph can be checked and in-

consistencies can be repaired to the extent possible by calling the mediator in the command

line using the parameters -quickRecover / -recover.

If resolving the inconsistencies is, contrary to expectation, not possible, then a backup copy

will need to be used.

4.2.5.7 Commands of the BlockFileSystem

The commands behind -bfscommand enable operations on the BlockFileSystem and are de-

signed for support cases. Such a command could look as follows, for example:

-bfscommand quickCheck {target volume}

Technical Handbook 5.8

453/488

The database addressed with {target volume} is subjected to a quick structural analysis. Sim-

ilarly, deepCheck can be used to perform a complete analysis.

4.3 Bridge

4.3.1 General

The bridge enables access to Knowledge Graphs on three types/operating modes:

• Via a RESTful services architecture (REST-Bridge). The interface is available as an HTTP
or HTTPS version (KHTTPRestBridge)

• Via KEM-RPC (KEMBridge): Access via KEM If binary data is supposed to be stored in the

Knowledge Graph, a REST bridge is required, which provides a REST service with a blob

resource handler.

• Operating mode “Load distributor for other bridges” (KLoadBalancer).

PLEASE NOTE: KLoadBalancer and KEMBridge/KHTTPRestBridge may not be activated in one

bridge at the same time because they interfere with each other.

The bridge and all of the accesses to be activated in it can be configured via an ini file. Settings

for accesses are bundled in sections. The most important of these parameters can also be

specified via a command line. If that is the case, the values of the command line call take

precedence over those in the ini file. The individual parameters are explained next.

4.3.2 Common command line parameters

If the bridge is started without any parameters, the required parameters are read from the

ini file bridge.ini and the error messages are written to the file bridge.log.

If there is also an entry in the ini file for a call parameter, then the call parameter has a higher

priority.

-inifile <File name>, -ini < File name >

Name of the ini file that is used instead of the standard ini file. The default is bridge.ini

-host <hostname:port>, -hostname <hostname:port>

Name of the mediator that acts as the data server. This applies to all activated bridge clients

-port |<ClientName> <portnumber>

Parameter -port should usually be set for every client in the ini file. However, if you want to

already do this in the command line, you can specify different clients by specifying the client

name in front of the port number. The line above applies to one client; hence, the -port

parameter must be repeated until several clients are configured.

Examples of calling the bridge:

bridge -host server01:30000 -port KEMBridge 4713 -port KEMStreamingBridge 4714

bridge -ini bridge2.ini -port KMultiBridge 3030

Technical Handbook 5.8

454/488

Command line parameter for logging:

-nolog

Disables logging

-loglevel <Integer>

Configures the messages that should appear in the log:

• 0: All messages including debug outputs
• 10 (default value): All messages excluding debug outputs
• 20: Warnings and error messages only
• 30: Error messages only

-logfile <file name>, -log <file name>

Name of the log file that is used instead of the standard log file. It is important to change this

parameter when several clients are being started in the same working directory.

-debug

Switches logging to debug mode

-log <logname>

Sets the log file to <logname>.

-stop <hostname>

If you call the bridge with the parameter above, the current bridge is prompted to terminate

on the specified host. All clients started in it are shut down and the bridge is terminated.

4.3.3 Configuration file "bridge.ini"

All of the following entries are found below the ini file section [Default]. The entries for the in-

dividual clients follow these. Adding client-specific configuration sections also defines which

clients are activated in the bridge to be configured and started. At the moment, potential

clients include:

• KEMBridge
• KHTTPRestBridge

In addition, the KLoadBalancer can be started as a client of the bridge, in which case the ini

file only includes the section

• KLoadBalancer

host = <hostname:portnumber>

see command line parameter -host

Memory settings:

The following three parameters are used to configure the memory allocation and usage. You

may specify values either in megabytes or actual bytes, whereby it is assumed that values

Technical Handbook 5.8

455/488

under 1048576 refer to megabytes.

maxMemory=<integer, in MB>

Maximum base memory usage permitted. A minimum of 50 MB, the total physical base

memory available (under Windows) or 512 MB by default.

baseMemory=<integer, in MB>

Basememory usage after which efforts to free upmemory increase. By default 0.6 *maxMem-

ory (alias: “growthRegimeUpperBound”)

freeMemoryBound=<integer, in MB> [10]

If memory that is being used, but is no longer needed, exceeds this limit, it is freed up for use

again.

minAge=<integer> [30]

Minimum duration (in seconds) in which a cluster remains in the memory. A cluster is a

set of objects that are always loaded together as one (e.g. an individual with all its (meta)

properties. Clusters that have not been used for an extended period are unloaded when

necessary.

unloadInterval=<integer> [10]

Minimum duration (in seconds) between two clusters being unloaded

unloadSize=<integer> [4000]

Minimum number of loaded clusters after which unloading occurs

keepSize=<integer> [3500]

Number of clusters that are kept when unloading

useProxyValueHolder=true/false

The option useProxyValueHolder=false can be used to reduce the mediator workload during

searches. The client then loads indexes in the basememory instead of querying themediator

by means of RPCs. The drawback of this option is that only read access is permitted.

loadIndexes=true/false

This option is also used to load indexes to the memory. However, it continues to allow write

access. The option can be activated for all clients, including Knowledge Builder.

Logging settings:

For the configuration options for logging, see the logging settings in Chapter 4.1.2 "Configu-

ration file".

4.3.4 REST bridge

4.3.4.1 Introduction

The REST-Bridge application enables read and write access to i-views via a RESTful services

architecture. The interface is available as an HTTP or HTTPS version.

The REST bridge runs inside the standard bridge of i-views (bridge.exe).

The interface is fully configured by configuration individuals in the Knowledge Graph. The

return value of a REST call is any string, usually in a format that the calling client can process

easily (e.g. XML or JSON).

Technical Handbook 5.8

456/488

4.3.4.2 Installation

4.3.4.2.1 Prepare volume

I. Creating a system account for the bridge service

To allow a Bridge service to access a Knowledge-Graph database that is managed by a Medi-

ator service, a system account must be created for the Bridge service in the database. This

can be done with the Admin-Tool (under System configuration > System accounts) or with
the Knowledge-Builder (Settings/Cogwheel > System tab > System accounts). The example
shows how a system account can be created using the Admin-Tool:

Step 1:

Admin-Tool - Create system account and enter account name

Step 2:

Click ’No’

Step 3:

Automatically generated login token is displayed

Important: The login token (rest-bridge_...) displayed in the last step is required again when

configuring the bridge (next chapter). The Enter token window should therefore remain open

or the token should be saved in a safe place.

Technical Handbook 5.8

457/488

II. Activating the REST component in the Knowledge Graph

By adding the software component “REST” in the Admin tool, the required schema is created

in the Knowledge Graph.

Technical Handbook 5.8

458/488

The schema is created as a subgraph of the Knowledge Graph called “REST,” which can only

be edited by an administrator in the Technical section:

Technical Handbook 5.8

459/488

4.3.4.2.2 Configure bridge

The REST interface is provided by the standard bridge component of i-views, provided the

corresponding configuration file bridge.ini contains an entry for the category KHTTPRest-

Bridge or KHTTPSRestBridge:

[KHTTPRestBridge]
volume=name of the semantic network
port=port at which the service is to be reachable, the default is 8815
authentication=token value of the system account created for this bridge (see above)
services=list of REST service IDs to expose

For the HTTPS version, the file paths for the certificate and private key must also be specified

in the configuration file.

[KHTTPSRestBridge]
volume=name of the semantic network
port=port at which the service is to be reachable, the default is 8815
authentication=token value of the system account created for this bridge (see above)
services=list of service IDs to expose
certificate=name of the .crt file
privateKey=name of the .key file

In the configuration section “KHTTPRestBridge” or “KHTTPSRestBridge” you can also enter

the following special configuration options:

Name Description

Technical Handbook 5.8

460/488

realm Name that is returned to the client as

the realm name if authentication is active.

Web browsers typically display the realm

name as the application name in dialog

boxes for authentication to ensure the user

knows who is requesting the authentica-

tion. Default value: REST

4.3.5 KEM bridge

KEMBridge

Section name:

[KEMBridge]

port = <portnumber>

Specifies the port under which the KEMBridge reacts. If no entry is made, the default value

of 4713 applies.

ldapHost = <hostname:portnumber>

Specifies the LDAP host to be contacted if authentication is to be performed via LDAP. If this

parameter is specified, authentication must be handled via LDAP.

maxLoginCount = <number>

Maximum number of failed attempts to log in before the relevant user is locked out of the

Knowledge Graph. After that, login is only possible after they have been unlocked via the

Knowledge Builder. If the value is not set, a user can make as many failed attempts to log in

as they wish.

In order to allow a user to be locked out of the Knowledge Graph, a Boolean attribute with the

internal name userlock and the default value false must have been defined for individuals of

the person concept.

KEMrestrictToIPAddress = <IP address>

If this parameter is set, connections are only accepted from the host specified here.

trustedLoginEnabled = <true/false>

Makes it possible to log in without a password by means of the request “newAuthenticate-

dUser(username).”

preventSessionReplay=<true/false>

[default=false]

This parameter specifies that each writing session receives its own protected Knowledge

Technical Handbook 5.8

461/488

Graph access, so that there is no longer any need for the usual mechanism of executing

the actions of a deactivated session again during reactivation in order to restore the most

recent editor state.

KEMStreamingBridge

Section name:

[KEMStreamingBridge]

port = <portnumber>

Specifies the port under which the KEMStreamingBridge reacts. If no entry is made, the

default value of 4714 applies.

4.3.6 KLoadBalancer

The KLoadBalancer can be used to scale the services and availability of the KEMBridge and

KEMStreamingBridge.

The following specification must be entered in the [KLoadBalancer] section in order to obtain

the required operating mode:

• allowRemoteShutdown (default value false)
• autoRestart (default value true)
• directory (default value current working directory in which the KLoadBalancer was
started)

• executable (default value ’bridge.exe’)
• image (default value ’bridge.im’)
• vm (default value ’visual’)
• hostname (default value Localhost)
• configNames (required value, not optional)
• parameters (default value blank)

The parameter #configNames is used for continuing the configuration of the KEMBridges

and KEMStreamingBridges to be started, with one bridge type controlled by each individual

configuration. The configuration names must be separated by a comma.

Here is an example of a KLoadBalancer ini file:

[Default] [KLoadBalancer] hostname=ws01 port=30003 directory=C:\3.2\balancing executable=bridge.exe ;vm=visual ;image=bridge.im configNames=KEM,Streaming [KEM] bridgeClientClassName=KInfinity.KEMBridge inifile=kembridge.ini bridgeLogfile=kem-<id>.log maxBridges=2 [Streaming] bridgeClientClassName=KInfinity.KEMStreamingBridge inifile=streaming.ini bridgeLogfile=streaming-<id>.log maxBridges=2

Upon starting, KEMBridges and KEMStreamingBridges are started in accordance with both

the configurations. Because the same software is used for operation as is used for oper-

ation of the KLoadBalancer, specifying the parameters #executable, #image and #vm (for

operation in Linux), #hostname, #directory and #parameters are required.

executable / image, vm; directory: Specifications for how the individual bridges can be

started. Specifying #executable and #directory is required under Windows, while specifying

#image, #vm and #directory is required under Linux.

hostname / port: The host name which is used to refer to the bridges to be started, and

the KLoadBalancer to be contacted for administration purposes. If nothing is specified here,

then the name of the computer is determined and used. The port indicates the port used by

the bridges to address the balancer, the default value is 4715.

Technical Handbook 5.8

462/488

Caution: The name of the respective mediator that the bridges contact to retrieve data must

be entered in the respective ini files in accordance with the configuration section.

parameters: A field that is used to add additional specifications in the command line of the

bridges to be started, and is the same for all bridges to be started.

allowRemoteShutdown: A parameter that specifies whether the KLoadBalancer can be

ended by means of a shutdown request using remote access.

autoRestart: Parameter that specifies whether a stopped KEMBridge should be restarted

after the shutdown, with a new ID.

Additional specifications must be entered in each configuration section:

• bridgeClientClassName (not optional, only one specification possible per section. Please
observe the syntax described above!)

• inifile (ini file with settings for this type of bridge to be started)
• bridgeLogfile (sample of a log file name in which a placeholder is added, <id>, which
is used to distinguish the log files for the individual bridges, and is replaced with the

consecutive number of the bridge that was started)

• maxBridges (maximum number of bridges of the specified type to be started, not op-
tional)

• sslEnabled (specifies whether the bridges of this type should use SSL to establish a con-
nection, default value false)

Note: The parameter #directory specifies the working directory in which the files specified

in the configuration sections are searched for and, when applicable, created. Software and

ini file for starting the KLoadBalancer may be located elsewhere.

The ini files for the respective bridges must have the usual structure. An example of the

KEM-referenced ini file in the configuration section above is provided here:

[Default] host=mediator-hostname:30053 [KEMBridge] trustedLoginEnabled=true preventSessionReplay=true sslEnabled=true timeout=10

For details, please refer to chapter 5, “Configuration file bridge.ini”.

4.4 Jobclient

4.4.1 General

On the one hand, the Job-Client provides services for other i-views clients to relieve them of

time-consuming and data-hungry tasks. On the other hand, it is used as the bridge between

i-views clients and external systems.

One of its most important tasks is to execute all types of queries and deliver the search

results to the clients (sorting, text formatting, rights filtering).

Normally, the client waits until a job is complete (synchronous operation).

To execute complex searches, generate statistics, batch reconciliations, data formatting, data

clearing etc. the client does not have to wait for completion (asynchronous operation). The

result is made available by the server and the client is notified. The result can be viewed

some time later. Since the result is also made persistent, it is still available if the system is

restarted or in case of a fail-over.

Operation:

In the shared object space provided by the i-views mediator, the tasks of the clients for the

Technical Handbook 5.8

463/488

services are stored in pools. All i-views Job-Clients are notified of new jobs and apply to

process the new job, provided they are currently free. Once the job has been processed,

the result is made available in the shared object space, the requesting client is informed

and the result can be retrieved and displayed. Hence, the client logically commissions a

Job-Client but the physical communication always goes through the i-views server. To the

client it is transparent which Job-Client is executing its job just as the source of the job and

how many parallel Job-Clients are currently active is transparent to the Job-Client. Hence

installation and maintenance of Job-Clients is very easy and flexible for administrators. Job-

Clients can be scaled as designed, distributed across different computers and be connected

and disconnected dynamically. External clustering or other orchestration is not necessary.

Technical data:

Multi-platform executable based on the VisualWorks Smalltalk Virtual Machine (jobclient.exe

or jobclient.im)

Requires a TCP/IP connection to the i-views server

Automatic load distribution between services

Job-Clients can be connected or shut down at any time

Standby mode in case required resources are temporarily unavailable

4.4.2 Configuration of the Jobclient

4.4.2.1 Configuration file "jobclient.ini"

The Job-Client is configured directly in the ini file. If this file is not specified by the call pa-

rameter “-inifile” when the Job-Client is started, "jobclient.ini” is used as the configuration

file.

4.4.2.1.1 General parameters

The following parameters can be configured:

Parameter: Description: Syntax:

host Name / IP address and

port of the server.

host=<host name:port number>

volume The name of the Knowl-

edge Graph for working

on. volume=<volume name>

Technical Handbook 5.8

464/488

jobPools Specifies which jobs the

Job-Client is supposed to

process. The names

of the job pools to be

started are to be speci-

fied in comma-separated

form. Alternatively, you

can also specify the cate-

gory (e.g. “index”). In that

case, all job pools of this

category are selected.

The possible types are

presented in the sub-

chapters.

jobPools=<job name1>
[,<job name2>, ...]
Example:

jobPools=KScriptJob, query

cacheDir The description of the

location at which the

cache for the Job-Client is

stored.

cacheDir=<directory>

volumeAcces-

sor

Description of the stor-

age type of the cache.

Unless specified other-

wise, CatBSBlockFileVol-

umeAccessor is used.

This storage type is rec-

ommended especially

for large Knowledge

Graphs as CatCSVol-

umeFileStorageAccessor

would create a large

number of files.

Example:

volumeAccessor=CatBSBlockFileVolumeAccessor

or

volumeAccessor=CatCSVolumeFileStorageAccessor

maxCacheSize Target size of the cache

maxCacheSize=<size in MB>

shutDown-

Timeout

Wait period for termi-

nation of the active job

when shutting down the

Job-Client. The jobs are

terminated at the end of

this period.

The default value is 10

seconds.

shutDownTimeout=<seconds>

enableLowS-

paceHandler

This option activates the

LowSpaceHandler. This

should always be acti-

vated for large Knowl-

edge Graphs.

enableLowSpaceHandler=true/false

Technical Handbook 5.8

465/488

useProxyValue-

Holder

This option can be used

to control whether the

Job-Client executes index

access via RPC (true) or

loads indexes to mem-

ory (false). This op-

tion should be deacti-

vated to ease the medi-

ator load. In doing so,

however, you should en-

sure that the Job-Client

has enough memory. If

the Job-Client has been

configured for write jobs,

this option has no effect

as index access is always

executed via RPC then. If

you set the value to false,

a message is output in

the log on start-up.

useProxyValueHolder=true/false

loadIndexes The loadIndexes=true

option has been avail-

able since version 4.2.

In that case, indexes

are also always loaded

to memory. In contrast

to the useProxyVal-

ueHolder option, it

continues to allow write

access. The option

can be activated for

all clients, including

Knowledge Builder.

loadIndexes=true/false

name This name is used to

identify the Job-Client in

the Admin tool in the

overview list of all Job-

Clients.

name=<Job-Client name>

scheduledJobs A comma-separated list

of jobs that are to be

scheduled. scheduledJobs=<Job name 1>
[, <Job name 2>, ...]

Memory settings:

The following three parameters are used to configure the memory allocation and usage. You

may specify values either in megabytes or actual bytes, whereby it is assumed that values

under 1048576 refer to megabytes.

Technical Handbook 5.8

466/488

Parameter: Description: Syntax:

maxMemory Maximum base memory

usage permitted. A min-

imum of 50 MB, the to-

tal physical base mem-

ory available (under Win-

dows) or 512 MB by de-

fault.

maxMemory=<integer, in MB>

baseMemory Base memory usage

after which efforts to

free up memory in-

crease. By default 0.6

* maxMemory. (alias:

“growthRegimeUpper-

Bound”)

baseMemory=<integer, in MB>

freeMemory-

Bound

If memory that is being

used, but is no longer

needed, exceeds this

limit, it is freed up for

use again.

freeMemoryBound=<integer, in MB> [10]

minAge Minimum duration (in

seconds) in which a

cluster remains in the

memory. A cluster is a

set of objects that are

always loaded together

as one (e.g. an individ-

ual with all its (meta)

properties. Clusters

that have not been used

for an extended period

are unloaded when

necessary.

minAge=<Integer> [30]

unloadInterval Minimum duration (in

seconds) between two

clusters being unloaded

unloadInterval=<Integer> [10]

unloadSize Minimum number of

loaded clusters after

which unloading occurs

unloadSize=<Integer> [4000]

keepSize Number of clusters that

are kept when unload-

ing.

keepSize=<Integer> [3500]

Job configuration:

To configure individual jobs in the configuration file, a new section has to be created for each

Technical Handbook 5.8

467/488

one. These are each started with the name of the job in a pair of square brackets. This is

followed by the respective parameters of the job.

Example:

[Job-Name1]
<Parameter>=<value>
...

[Job-Name2]
...

Logging settings:

For the configuration options for logging, see the logging settings in Chapter 11.1.2 Configu-

ration file.

Lucene server configuration:

Lucene is integrated via a Job-Client whose jobclient.ini file has to be configured accordingly.

Below is an exemplary configuration:

[lucene]
directory=lucene-index
port=5100
pageSize=100
; Wildcards at the start of a word are prohibited by default as they are very slow
; Allow in this configuration
allowLeadingWildcards=true

[JNI]
classPath=lucene-6.4.1\core\lucene-core-6.4.1.jar;lucene-6.4.1\analysis\common\lucene-analyzers-common-6.4.1.jar;lucene-6.4.1\analysis\queries\lucene-queries-6.4.1.jar;lucene-6.4.1\analysis\queries\lucene-queries-6.4.1.jar

The directory lucene-6.4.1 contains the Lucene binary files. The index is stored in the directory

lucene-index.

4.4.2.1.2 Job specific parameters

In general:

Parameter: Description: Syntax:

jobPool JobPool for executing the job.

jobPool=<Job-Pool-Name>

...?

Technical Handbook 5.8

468/488

scheduledJobs:

Parameter: Description: Syntax:

time Time at which the job

should be executed for

the first time. time=<Time>

Example:

time=22:15

interval Specifies how frequently

the job should be exe-

cuted. (d=days, h= hours,

m=minutes, s=seconds)

interval=<Exact time>

command For KExternalCom-

mandJob only. Name

of an external batch file

that should be executed

by the job.

command=<File name.cmd>

scriptName For KScriptJob only.

Registration key of an in-

ternal script that should

be executed by the job.

command=<Script resource>

unique (?)

unique=true/false

user (? only) Internal name

of a user instance under

which the job should be

executed.

user=<User name>

arguments (For KExternalCom-

mandJob only?). Argu-

ments that are trans-

ferred when the script is

called.

arguments=<Argument1 [Argument2 ...]>

4.4.2.2 JobPool types

The following types of job pools are available:

Technical Handbook 5.8

469/488

4.4.2.2.1 Index jobs

• Category (categories): index

If you specify index or the job classes displayed below, the indexing jobs are executed by the

Job-Client. The indexing jobs should be performed by a single Job-Client. Instead of listing all

the job classes individually in the job pool, you can also use the symbolic name index.

KAddAllToIndexJob

• Name: Add attributes to the index

KLightweightIndexJob

• Name: Update external index

An external index is maintained via the KLightweightIndexJob.

KLuceneAdminJob

• Name: Lucene admin job

The KLuceneIndexJob maintains an externally set-up Lucene index.

KRemoveIndexJob

• Name: Remove attributes from the index

KSyncIndexJob

• Name: Synchronize index

KAddAllToIndexJob, KRemoveIndexJob and KSyncIndexJob are required tomaintain inter-

nal indexes.

4.4.2.2.2 KBrainbotJob

• Category/categories: <none>
• Name: KBrainbotJob

KBrainbotJob executes actions to maintain the Brainbot index.

Within the configuration in the Admin tool, if it is specified that maintenance actions are to

be executed by a Job-Client (“Use Job-Client”), a Job-Client must be started to maintain the

external index.

The KBrainbotJob has no additional configuration parameters the ini file because all the con-

figuration takes place in the Admin tool.

4.4.2.2.3 KExternalCommandJob

• Category/categories: <none>

Technical Handbook 5.8

470/488

• Name: External call

Using the KExternalCommandJobs it is possible to activate executable programs that are

concerned with processing or changing files, or that are simply to be called. No configuration

is necessary in the ini file of the Job-Client. The job is also inserted by a script call.

The main element of the script call is the element ExternalCommandJob. The attribute Ex-
ecution allows the user to set whether the job should be executed locally without Job-Client

(value: local) or with Job-Client (value: remote). The default value is remote.

Note about remote execution:

Access to local programs is checked by calling a batch file. Before the Job-Client takes a

KExternalCommandJob to execute, it checks whether it can execute this job. This is the case

if the batch file, which is specified in the element command, exists in the current directory of

the Job-Client. If the currently pending job is not accepted for processing by any Job-Client,

then the job queue is blocked for the user who inserted the job. This job must be deleted

manually.

The necessary first subelement in the script:

• Command: specifies which batch file should be called

<Command>convert.bat</Command>

The name of the batch file is specified in the command element. The directory and the actual

program to be executed are specified in the batch file. Important: The batch file must be located
on the same level as the program (e.g. Job-Client or KB). Directory specifications in the command

element are ignored.

The other subelements are worked through from top to bottom. If the order of parameters

plays a role in the external program, this should be factored in.

Script elements that form the parameters for the call:

• OptionString: can be used multiple times. Parameters of the external program to be
called are specified as strings. The parameters entries must be specified in full.

<OptionString>-size 100x100</OptionString>

• OptionPath: the path expression specified is evaluated and built up in the command
call as a string

<OptionPath path="./topic()/concept()/@$size$"/>

Script elements that are concerned with the handling of attributes

• SourceBlob: This specifies the blob attribute that is used as a data source
<SourceBlob><Path path=“$image$"/></SourceBlob> <SourceBlob path=“$image$"/>

• ResultAttribute: This specifies the parameter for the generation of a new, or the
change of an existing, blob attribute with the content of the file, or the file itself, that

is the result of the program called externally.

Attribute values:

name: Name or internal name of the attribute

Topic to be created: Target individual of the attribute

modifyExisting to be created: change (true) or create new (false, default value)

filename: File name of the blob attribute to be created

<ResultAttribute name=“$image2$" topic="./topic()" modifyExisting="true" filename="convert_ +./valueString()"/> <ResultAttribute name=“$image2$" topic="./topic()" modifyExisting="true" filename="convert_ +./valueString()">

Technical Handbook 5.8

471/488

<Path path=“$image2$"></ResultAttribute>

Example 01:

Script:

<Script> <ExternalCommandJob execution="local"> <Command>convert.bat</Command> <OptionString>-size 100x100</OptionString> <SourceBlob><Path path="."/></SourceBlob> <OptionString>-geometry +5+10</OptionString> <SourceBlob><Path path="."/></SourceBlob> <OptionString>-geometry +35+30</OptionString> <OptionString>-composite</OptionString> <ResultAttribute name=”$image2$" topic="./topic()" modifyExisting="true" filename="convert_ +./valueString()"/> </ExternalCommandJob> </Script>

Content of the batch file under Windows:

"C:\Program Files\ImageMagick-6.2.6-Q16\convert.exe" %*
exit /B %ERRORLEVEL%

Content of the batch file under Linux:

#!/bin/bash
convert $*

Example 02:

Script:

<Script> <ExternalCommandJob execution="local"> <Command>convert2.bat</Command> <SourceBlob path="."/> <SourceBlob path="."/> <ResultAttribute name=”$image3$" topic="./topic()" modifyExisting="true" filename="convert2_ + ./valueString()"/> </ExternalCommandJob> </Script>

Content of the batch file under Windows:

"C:\Program Files\ImageMagick-6.2.6-Q16\convert" -size 100x100 %1
-geometry +5+10 %2 -geometry +35+30 -composite %3
exit /B %ERRORLEVEL%

Content of the batch file under Linux:

#!/bin/bash

convert -size 100x100 $1 -geometry +5+10 $2 -geometry +35+30 -composite $3

Note: The two examples deliver the same file as the result. The exit command is used in the

Windows batch files to return the exit code of “convert” to the call.

Here is another example of an advanced conversion script that can be called using the pa-

rameters “Source file”, “Image width” and “Target file” and that only minimizes wider images

to the specified width. The script also writes a log file for the conversion, whereby error

messages from Image Magick are also written to the log file:

set MONTH_YEAR=%DATE:∼-8%
echo Converting %1 to %3 (width: %2) >> convert%MONTH_YEAR%.log
convert.exe %1 -resize "%∼2>" %3 2>> convert%MONTH_YEAR%.log
echo Conversion finished with exit code %ERRORLEVEL% >> convert%MONTH_YEAR%.log
exit /B %ERRORLEVEL%

And here is the version for Linux (Bash):

#!/bin/bash
FULLDATE=‘date +%c‘
MONTH_YEAR=‘date +%m.%Y‘
LOGFILE="convert.$MONTH_YEAR.log"

Technical Handbook 5.8

472/488

echo "$FULLDATE: Converting $1 to $3 (width: $2)">>$LOGFILE
convert "$1" -resize "$2>" "$3" 2>>$LOGFILE
EXITCODE="$?"
echo $FULLDATE: Conversion finished with exit code $EXITCODE>>$LOGFILE
exit $EXITCODE

4.4.2.2.4 KExtractBlobTextJob

• Category/categories: <none>
• Name: Convert blob to a text attribute. Using the batch file specified on the “Index con-
figuration -> External full text filter” tab in the Admin tool, the text content is extracted
from the blob attribute and stored in a new attribute of the specified text attribute type.

The other parameters available for the job are the topic in which the extract is to be cre-

ated, and, if the specified text attribute is multilingual, the language of the attribute to

be displayed. This job is inserted by a trigger, which should be set up to react to the cre-

ation and modification of blob attributes. The KScript rule to be specified in this process

is “ExtractBlobText,” which permits the parameters described above to be specified.

4.4.2.2.5 KQueryJob

• Category(s): query
• Name: Search

Used to outsource the running of simple and expert queries to a Job-Client. Is equipped and

executed to suit the needs of the examined search.

4.4.2.2.6 KScriptJob

• Category (categories): script
• Name: KScriptJob

You can use the KScriptJob to call KScripts from KScript so that they are executed on the

Job-Client. Here, the job is generated by the KScript rule “ScriptJob” which is equipped with

the script and the start objects calculated at this time as the starting point and enters the

resulting KScriptJob into the job queue. In this way, work can be distributed asynchronously

to Job-Clients. This is used, for example, to externalize activities that would block the calling

client for too long in a sequential execution.

To do this, the parameter "scriptName" must refer to the registration key of a script stored in

the Knowledge Graph. The script is automatically encapsulated in a transaction.

4.4.2.3 Example for an ini file

volume=MyKnowledgeGraph
host=localhost

Technical Handbook 5.8

473/488

jobPools=query, index
cacheDir=jobcache
logfile=jobclient01.log
maxMemory=400
name=jobclient01

4.4.2.4 Performance optimizations

Pre-load

When starting up, Job-Clients can pre-load selectable structures if configured accordingly.

This operation increases the amount of memory that the Job-Client requires, but it also en-

ables the Job-Client to run more quickly.

The entry keepClusterIDs must be specified in the ini file of the Job-Client. Possible values

for this entry are:

• index - In the settings for pluggable indexers, there is an option to set the check-mark
for Job-Client to load index into base memory. For activated indexers, a part of their index

structure is loaded.

• protoOfSizes - The number of individuals for each concept is already determined at the
start.

• accessRights - The root object of the rights system is loaded into the memory.

Please note: For the entry useProxyValueHolder the value must be set to false. Otherwise,

the Job-Client will attempt to send RPCs (requests to which the mediator can respond) to the

mediator. The client however, should load the clusters itself and possibly retain them in its

memory.

Note: To improve performance, it also helps to activate the hard drive cache for the Job-

Client.

Example of entries in the ini file:

[Default]
...
useProxyValueHolder=false
keepClusterIDs=index,protoOfSizes,accessRights
cacheDir=jobcache
maxCacheSize=1000
...

4.5 Batch tool

The batch tool allows to perform administrative commands and data import/export com-

mands from the command line. The desired command needs to be passed as a command-

line parameter, followed by command-specific parameters. It is also possible to perform a

series of commands.

Technical Handbook 5.8

474/488

4.5.1 Common command line parameters

All commands share some common parameters:

-host

URL or host name and port of the server

-volume

Name of the volume

-user

Deprecated. Name of a user account that should be activated when running the command-

line. Use an authentication token instead (see configuration file options), to avoid leaking

user/password information to other processes.

-password

Password of the user

4.5.2 Configuration file options

authentication

System account authentication token

host

URL or host name and port of the server

volume

Name of the volume

4.5.3 Commands

4.5.3.1 Importing or exporting mapped data

These commands allow to import or to export data based on a mapping defined in the vol-

ume.

The following example exports data mapped by the mapping registered as „ example.export“

to the file „data.csv“:

batchtool -volume example -exportMapping example.export -file data.csv -errorLogFile export-errors.log

4.5.3.1.1 Command line parameter

Either

-exportMapping

Export mapped data

or

Technical Handbook 5.8

475/488

-importMapping

Import mapped data

4.5.3.1.2 Additional command line parameters

-encoding {name}

Name of a character encoding, e.g. utf-8. Determines the connection encoding for database

mappings, and the text encoding for text files (e.g. CSV files).

-errorLogFile {logfile}

Filename of the error log

-mapping {ID}

Registered ID of the data mappings

-triggers {true/false}

Enable/disable triggers during import

4.5.3.1.3 Command line parameters for file mapping only

-caption {true/false}

True if the table file contains/should contain captions

-file {filename}

Possible values: Name of the file to be imported/exported

-separator {separator string}

Cell separator string

4.5.3.1.4 Command line parameters for database mappings only

-binding {name value}

Name-value pair for database bindings. Only used by database mappings that contain a

named binding in the query

-dbEnvironment {string}

Database connection string

-dbHostname {string}

Database host. For MySQL only.

-dbPassword {string}

Database password

-dbUsername {string}

Database user name

Technical Handbook 5.8

476/488

4.5.3.2 Importing or exporting RDF files

These commands allow to import or export RDF(S) or OWL files.

4.5.3.2.1 Command line parameter

Either

-exportRDF {filename}

Export an RDFS or OWL file

or

-importRDF {filename}

Import an RDF, RDFS or OWL file

Note: The export always uses RDFS or OWL, it is not possible to export „pure“ RDF.

4.5.3.2.2 Additional command line parameters

-parameter {name} {value}

Set a parameter controlling the RDF import/export

-query {ID}

Set the query that returns the elements that should be exported

-queryParameter {name} {value}

Set a query parameter

4.5.3.2.3 Export parameters

The following export parameters can be set with -parameter {name} {value}

abbreviateURIs

Abbreviate URIs using rdf:ID and xml:base

baseURI

Base URI

blobHash

True if additional comments should be exported

exportFrameIDs

Export object frame IDs

exportLabels

Export name as rdfs:label

exportMeta

Technical Handbook 5.8

477/488

True if meta properties should be exported. They will be exported as reifications.

exportPropertyIDs

Export IDs of properties

exportReferencedTopics

True if external relation targets should be exported as stubs

ignoreStoredIdentifier

If true, the RDF locator will always be generated. If false, the rdf:about/rdf ID attribute will be

used if present

qualifier

XML qualifier bound to the base URI

schemaNameSpace

Default schema XML namespace

schemaOnly

True if only types should be exported

updatePersistentIdentifier

True if the generated values for rdf:ID / rdf:about should be materialized as attribute values

useFrameURIs

True if URIs constructed from the object ID should be used to identify objects

useKRDF

True if KRDF properties (e.g. krdf:internalName) should be exported

useOWL

True if OWL vocabulary should be used

4.5.3.2.4 Import parameters

activateTriggers

True if triggers should be enabled

allowExtensiveRestructurings

Perform schema changes even if they impact a lot of objects

avoidDuplicateProperties

True if duplicate properties should be skipped

baseURI

Base URI

changeCompatibleInstanceTypes

Change instance types even if the current type is compatible with the defined type

enableCreateSchema

True if schema may be created / modified

Technical Handbook 5.8

478/488

enforceInverseRelationConcepts

true: Create inverse relation types if not defined.

false: Relations without inverse will be symmetric.

importCommentsAsAttributes

Import rdfs:comment as attribute (must be defined in the schema)

importReferencedResources

Import referenced external RDF resources

importValuesAsAttributes

Import rdf:value as attribute (must be defined in the schema)

4.5.4 Running scripts

This command allows to run arbitrary scripts written in JavaScript.

4.5.4.1 Command line parameter

-script {registered script ID}

Runs a registered script

-scriptfile {filename}

Runs a script read from the file

4.5.4.2 Additional command line parameters

-argument {argument name} {argument value}

Set the global script variable named {argument name} with value {argument value}

-encoding {encoding name}

Set the output encoding to {encoding name}

-errorLogFile {filename}

Filename of the error log

-output {file name}

Print all output to {file name}

-stdout

Print all output to stdout and errors to stderr. Log entries will only be written to the log file.

4.5.5 Importing or exporting schema

These commands allow to import or export the schema the Knowledge Graph. This includes

Technical Handbook 5.8

479/488

• Types
• View configurations
• REST service definitions
• Registered queries, scripts, mappings, folders
• Triggers
• Access rights
• Index configurations and filters

4.5.5.1 Common command line parameters

Either

-exportSchema {schema file}

Export the schema as a file

or

-importSchema {schema file}

Import the schema from a file

4.5.5.2 Additional command line parameters

-filter {filter file}

Specifies a filter file (see next chapter)

4.5.5.3 Export filter

The filter file defines which registered objects are exported. Each line defines a positive

(starts with "+") or negative (starts with "-") flag, a category, and a pattern matched against

the registered ID. The category and the ID pattern may contain the wildcards "*" for a partial

string or "#" for a single character. A line beginning with ";" is ignored.

Objects without ID are only matched if the ID pattern is "*".

Objects that do not match any filter are exported

Schema sub nets arematched against the value of "RDF:about" of the top type (e.g. "http://www.intelligent-

views.de/kinfinity/component/rest/4.0/type/rest-ConfigTopConcept").

Possible categories:

accessRights, dataConnections, editorDetection, indexers, indexFilter, ldap, license, map-

pings, organizingFolder, printConfigurations, queries, schema, scripts, topicCollection, trig-

gers, unknown.

Example:

+ queries custom.* - * *

This will export all queries whose ID match the pattern "custom.*".

Technical Handbook 5.8

480/488

4.5.6 Importing licenses

This command allows to import a license file. This might be necessary for bootstrapping,

because other commands will fail if a volume has an invalid license.

Command line parameters

-importLicense {license file}

Imports the license from the file.

4.5.7 Upgrading components

This command allows to upgrade the software / model components of the volume. It is also

possible to reinitialize the schema.

4.5.7.1 Command line parameter

-upgradeComponents {optional component names}

Upgrades the specified components, or all components if none are specified

Possible component names:

iviewsProducts, kem, kintelligence, knowledgeBuilder, knowledgePortal, mqtt, netNavigator,

printing, rest, tagging, translator, viewConfigMapper

4.5.7.2 Additional command line parameters

-updateSchema

Reinitializes the schema of components

4.5.8 Executing a series of commands

This command allows to perform a series of commands. This is more efficient than running

the batch tool for each command separately, because data that has already been loaded by

a previous command does not need to be reloaded.

Command line parameter

-batchFile {file}

Perform all commands listed in the batch file. Must be UTF-8 encoded. The batch file must

not contain command line parameters (host, volume etc.)

Example:

batchtool -volume example -batchFile commands.txt

With commands.txt containing the following lines:

-exportMapping example.export1 -file data1.csv -errorLogFile export1-errors.log -exportMapping example.export2 -file data2.csv -errorLogFile export2-errors.log

This will perform two exports.

Technical Handbook 5.8

481/488

4.5.9 Example: Importing per batch tool

For importing data using the batch tool, access to the import data is needed as well as a

network connection to the mediator. If the batch tool is going to be executed on a different

server as the mediator for import is locate on, the following entries of the batchtool.ini file

must be adjusted:

• Address/URL of the server ("host=")
• Port number of the server ("port=")
• Name of the volume ("volume=")
• Token for authentication, to be created using the admin tool ("authentication=")

Note: As for all "headless" utility programs, the dynamic link library file "vwntoe.dll" is

needed when using the batch tool within Windows.

For a one-time call of the batch tool by means of a control file (e. g. "import.data"), the

command line will be as follows:

batchtool -batchFile import.data

If the batch tool is not situated in the same directory as the working directory of the com-

mand line (or of the scheduled task), at least the ini file needs to be in the same directory as

the working directory or the ini file needs to be passed on in forms of a parameter:

D:\PATH\batchtool\batchtool -ini D:\PATH\batchtool\batchtool.ini -batchFile import.data

"PATH" relates to the machine from which the command line call is invoked.

The control file can be created easily as follows:

-importMapping MAPPING1 -file EXCELDATEI1 -errorLogFile MAPPING1-errors.log -importMapping MAPPING2 -file EXCELDATEI2 -errorLogFile MAPPING2-errors.log -importMapping MAPPING3 -file EXCELDATEI3 -errorLogFile MAPPING3-errors.log

MAPPINGx = registered name of the import mapping in i-views

EXCELDATEIx = file name, where necessary incl. file path

For the regular execution of the import, a "scheduled task" containing the procedure call can

be configured on the operating system (known as "Task Scheduler" within Windows or as

"cron" within Linux).

If the import needs to be done as a subsequent process after a previous export from another

system, the calls can be encapsulated within a batch file (*.bat, *.cmd or *.ps1) to ensure that

the import only starts when the export has been processed successfully.

4.6 Blob service

4.6.1 Introduction

The blob service is used to store the data of large files outside the Knowledge Graph but links

to the file attributes in which these file contents are supposed to be stored. This has several

advantages:

• It has the effect that the Knowledge Graph only receives the semantic information that
is based on files and remains easy to backup and transfer.

• Storage locations of the Knowledge Graph and file contents can be configured differ-
ently.

• Several blob services can be connected to one Knowledge Graph, so that one storage

Technical Handbook 5.8

482/488

location can be provided for each attribute definition.

The following chapter explains how to set up and operate blob services.

4.6.2 Configuration

To specify under which network address (host and port) the blob service is supposed to be

reachable, the “interfaces” option must be entered in the file “blobservice.ini.” There are two

options here:

1. The blob service is supposed to be reachable only from the computer on which the blob

service is installed.

2. The blob service is supposed to be reachable also by other computers via the network.

Here is an a configuration example for variant 1, whereby the blob service port (30000) can

be selected freely.

interfaces=http://localhost:30000

To configure variant 2, you need to enter the IP address of the network adapter via which the

blob service is supposed to be reachable from the network instead of “localhost.” If you want

the blob service to be reachable via all network adapters that are active on the computer,

you have to enter “0.0.0.0” as the IP address. Example:

interfaces=http://0.0.0.0:30000

If the blob service is address via the network, communication should be encrypted. En-

crypted communication using HTTPS can also be configured in the “interfaces” option by

replacing “http://" with “https://.” Example:

interfaces=https://0.0.0.0:30000

In relation to encrypted communication, see also the next chapter called SSL certificates.

To ensure operation, the DLL of the SQLite framework "sqlite3.dll" must also be available

in the working directory. Without this DLL, the internally required administration structure

cannot be generated and maintained.

Following that, the blob service can be started to make it available immediately.

To link the blob service with a blob store in the Knowledge Graph, the Admin tool offers the

required tools under “System configuration - Blob storage:”

Technical Handbook 5.8

483/488

Clicking on “Create” (1) creates a new logical store. After that, enter the URL (2) of the blob

service specified in the ini file and then click on “Add” (3). The newly created blob store for

external storage of file attributes is then linked to the blob service, which you can check by

clicking on “Update” (4) in the lower display area.

You can also specify a comma-separated list of alternative URLs in the “URLs” area (2). For

alternative URLs, i-views prefers a connection via a loop-back device where possible.

The “Deletable files” area (7) displays the number of files that are no longer required from

the Knowledge Graph perspective. Use “Delete" (8) to de-reference them in the blob service

and remove them if appropriate.

The indicator “Internal” (9) shows that this is a store that is integrated into a mediator. Inter-

nal stores are automatically transferred with the volume during a volume transfer (upload,

download, copy, backup, recover).

If you want to remove the link between a blob store and a blob service, select the desired

blob store in the list “External stores in the blob service” and click “Remove” (5). Following

that, you can select the blob store in the top section “External storage for file attributes” and

then click “Delete” (6) to remove it completely. Alternatively, you can specify a new URL to link

the blob store to another blob service.

PLEASE NOTE!

By removing a blob store s link to a blob service, all files stored therein are lost!

4.6.3 SSL certificates

To configure the HTTPS connection, the certificate and the private key must be stored.

The certificate must be stored under certificates/server.crt.

Technical Handbook 5.8

484/488

The private key must be stored under private/server.key. Make sure that server.key is avail-

able as an RSA key, i.e. the first line of the file must be

—–BEGIN RSA PRIVATE KEY—–

. If the key is in a different format, it has to be converted. Using OpenSSL, this is possible e.g.

by means of "openssl rsa -in input.key -out private/server.key -outform PEM".

4.7 Install as an OS service

It is possible to set up the service programs as OS services in the various supported operating

systems.

For Unix-type operating systems, it is necessary to use the mechanisms supported by the

relevant platform; you will find several examples in the version-independent manual for i-

views.

ForMS-Windows, the services offer the parameters -installAsService NAME and -uninstallService

NAME , which can be used to set up or remove a Windows-managed service from an admin-

istrative shell. During the installation, all the parameters specified after the service name are

transferred to the installed service as command line parameters. Example:

bridge -installAsService iviews-bridge-rest -inifile bridge-rest.ini

sets up a service with the name “iviews-bridge-rest”, which is given

PFAD\bridge.exe bridge.exe -serviceName iviews-bridge-rest -ini bridge-rest.ini

as its call line.

4.8 Login with OAuth 2.0

Users of the Knowledge-Builder and the Admin-Tool can be authorized with the OAuth 2.0

framework. This requires an external authorization server that provides the tokens to access

the Knowledge Graph. It is also necessary to install a bridge service that provides a REST

interface for handling user data

4.8.1 Limitations

• The only supported grant type is the authorization code flow
• Server administration tasks (e.g. upload Knowledge Graphs) cannot be authorized with
OAuth

• When creating Knowledge Graphs, the initial graph administrator account is created
with username and password. The administrator can be authorized either with OAuth

or username and password.

Technical Handbook 5.8

485/488

4.8.2 Authorization flow

When a user opens a Knowledge Graph that has been configured to use OAuth 2, a web

browser will be opened and directed to the login URI. There, the user performs the necessary

steps to login, e.g. confirm the login or enter credentials.

Afterwards, a request containg a grant is sent to a redirect URI which must point to the end-

point

/oauth/redirect

of the Knowledge graph server. This endpoint then requests a token from the authorization

server. The token is validated using the public keys (JWKS). The token then allows access to

the Knowledge Graph.

Once a user has been authorized, then the server sends a POST request containing the data

to an endpoint of the REST interface provided by the bridge service. This allows to perform

additional, customizable steps to create user objects in the Knowledge Graph.

4.8.3 Configuration

The OAuth framework can either be configured for the entire server, which affects all Knowl-

edge Graphs, or for a single Knowledge Graph.

4.8.3.1 Configuring the authorization server

The authorization server must be prepared for an authorization code flow. This usually re-

quires registering a new application and generating a client ID and secret. It is also necessary

to register a redirect URI that points to the OAuth redirect endpoint of the server.

4.8.3.2 Configuring OAuth for the entire server

The OAuth configuration for all Knowledge Graphs of a server is part of the server configu-

ration file (mediator.ini). It can (but must not) be put in a separate file by using an include

directive.

The server must provide an HTTP or HTTPS interface. The redirect endpoint is available at

the path

/oauth/redirect

Filemediator.ini

interfaces=http://0.0.0.0:30080,https://0.0.0.0:30443 $(include:oauth2.ini)

File oauth2.ini

[auth-oauth2] clientID=12345-abcd-6789-1234-123456789 clientSecret=qwertzuioplkjhgfdsayxcvbnm configURI=https://login.microsoftonline.com/c4cc84aa-3413-47c6-bd6e-c38019596fbf/v2.0/.well-known/openid-configuration redirectURI=https://exampleserver:30443/oauth/redirect loginFinishedURI=https://exampleserver:8815/oauth/userAccount userNameKey=preferred_username createAccounts=true

The configuration is contained in the category [auth-oauth2]. The values are

Technical Handbook 5.8

486/488

Con-

fig-

u-

ra-

tion

Re-

quired

Description

cli-

en-

tID

yesOAuth Client ID

clientSe-

cret

yesOAuth Client secret

con-

fig-

URI

yes

(*)

URI of an OpenID connect configuration endpoint.

This URI is used by the mediator to get information about the openid configuration.

redi-

rec-

tURI

yesPublic redirect endpoint of the mediator server. This is usually

http(s)://SERVERNAME:SERVER_PORT/oauth/redirect

(SERVERNAME and SERVER_PORT must be replaced with actual values).

This is invoked from the authentication service and adresses the mediator.

Pay attention to possible sub-pathing, e.g. if the mediator is reachable at

https://server/mediator/

login-

Fin-

ishe-

dURI

noURI of the graphs REST endpoint for handling the user data. This is usually

http(s)://SERVERNAME:REST_PORT/oauth/login-finished

(SERVERNAME and REST_PORT must be replaced with actual values).

It is possible to use the macro {volume}, which is replace by the name of the accessed

Knowledge Graph.

This URI is invoked by the mediator and targets a REST endpoint of the graph the user

is logging on to. This is only required, if - after login - data from the authentication

token should be used to fill a user topic.

user-

NameKey

noName of the token property that contains the user name, e.g. preferred_username

(which is also the default value)

cre-

ateAc-

counts

noBoolean value that defines if new accounts should be created in the Knowledge Graph

for authorized users.

If false, then users can only login if an account has already been created for them. The

default value is false.

scopesnoComma separated list of additional requested scopes. The following scopes will always

be requested and do not need to be configued: openid, email, profile, offline_access

* If no OpenID connect configuration endpoint (configURI) is given, then the following settings

must be configured:

Con-

figura-

tion

Description

Technical Handbook 5.8

487/488

jwk-

sEnd-

point

URI of an endpoint that returns the public keys (JSON Web Key Sets), e.g.

https://login.microsoftonline.com/c4cc84aa-3413-47c6-bd6e-

c38019596fbf/discovery/v2.0/keys

toke-

nEnd-

point

URI of the token endpoint, e.g.

https://login.microsoftonline.com/c4cc84aa-3413-47c6-bd6e-

c38019596fbf/oauth2/v2.0/token

autho-

rizatio-

nEnd-

point

URI of the authorization endpoint, e.g.

https://login.microsoftonline.com/c4cc84aa-3413-47c6-bd6e-

c38019596fbf/oauth2/v2.0/authorize

4.8.3.2.1 Configuring HTML pages

By default a login attempt will finally redirect the browser to a HTML page showing a success

oder failure message. Without further configuration standard plain text messages will be

presented. If required, this can be customized by defining templates in the auth-oauth2

section:

[auth-oauth2]
htmlTemplates=oauth2-html-authorized-de,oauth2-html-authorized-en,oauth2-html-unauthorized-de,oauth2-html-unauthorized-en
; Addition configuration ommitted

[oauth2-html-authorized-de]
state=authorized
languages=de
file=html\authorized-de.html

[oauth2-html-authorized-en]
state=authorized
languages=*
file=html\authorized-en.html

[oauth2-html-unauthorized-de]
state=unauthorized
file=html\unauthorized-de.html

[oauth2-html-unauthorized-en]
state=unauthorized
file=html\unauthorized-en.html

htmlTemplates is a comma-separated list of unique section names. Each section can have

the following entries:

state must be authorized or unauthorized

Default value: authorized

Technical Handbook 5.8

488/488

lan-

guages

comma-separated list of languages, * can be used to match any language.

Default value: *

file HTML file. The file must self-contained, no additional files are included.

redi-

rect

URI that is opened via a redirect (307) instead of showing a built-in HTML file. Only

used when file is not specified.

4.8.3.3 Configuring OAuth for a Knowledge Graph

OAuth can be configured for a single Knowledge Graph in the Knowledge-Builder. This can

be done by administrators only. To configure OAuth, open the settings, and select OAuth on

the System tab. The settings are equal to the server configuration described above.

If a configuration is present, it has precedence over the configuration of the server.

4.8.3.4 Configuring the OAuth REST endpoint

The server only creates basic user accounts when registering new users. All additional steps

must be performed by a REST endpoint provided by a bridge service. To simplyfiy the setup,

add the software component OAuth login in the Admin-Tool. This will create a basic setup:

• A mapping rest.oauth.userMapping that maps the user data to objects of the Knowl-
edge Graph

• A script rest.oauth.postUserAccount that uses the mapping to create user objects.
• An endpoint /oauth/userAccount which calls the script
• An OAuth configuration skeleton. This is incomplete and must be adjusted to the server
setup (e.g. set host names)

	Knowledge-Builder
	Global actions and settings
	Global context menu
	Personal settings
	System settings
	Index configuration
	Configuration file kb.ini

	Access rights and triggers
	Check of access right
	Trigger
	Filter types
	Operation parameters
	Operations
	Testbench

	View Configuration
	Concept
	Menus
	Actions
	View configuration elements
	Knowledge Builder configuration
	Style
	Detector system for determining the view configuration

	JavaScript API
	Introduction
	Examples
	Modules
	Editor/Debugger
	API extensions

	REST services
	Configuration
	Services
	Resources
	CORS
	OpenAPI documentation

	Reports and printing
	Create print templates
	Create print templates for lists
	Document format conversion with OpenOffice/LibreOffice

	Tagging
	Configuration
	View configuration
	Tagging by Script
	Required software

	Development support
	Dev tools
	Dev service

	KB plugins and components
	Units component
	Custom components

	External Index
	Application Areas
	Export Mapping

	Admin Tool
	Admin tool configuration
	Launch window
	Server
	Knowledge Graph
	Administrate, New and Start
	About

	Create a new Knowledge Graph
	Server
	New Knowledge Graph
	Server password
	License
	User name
	Password (user)
	Ok and Cancel

	Server administration
	Graph overview
	Message field
	Menu line

	Individual Knowledge Graph administration
	User authentication
	Individual Knowledge Graph administration window

	View Configuration Mapper
	Introduction
	Interaction patterns
	Building blocks of dynamic behavior
	Application state
	Interaction patterns and recipes

	Configuration
	Frontend configuration
	View configurations for the View Configuration Mapper
	Login configuration
	The View Configuration Mapper component
	Create a project with the View Configuration Mapper
	Modify templates
	Operate the frontend

	Actions
	Panels
	Activation of panels
	Layout panels
	View panels
	Dialog panels

	Viewconfig elements
	General
	Alternative
	Layout
	Hierarchy
	Properties
	Property
	Edit
	Form inputs
	Table
	Search
	Graph configuration
	Text
	Image
	Script generated HTML
	Script generated view

	Bookmarks and history
	Bookmark Resource
	Link to Panels
	In-app navigation with bookmarks

	Plugins
	vcm-plugin-calendar
	vcm-plugin-chart
	vcm-plugin-html-editor
	vcm-plugin-maps
	vcm-plugin-markdown
	vcm-plugin-timeline
	vcm-plugin-page
	vcm-plugin-net-navigator

	Special configuration
	Switching language of web frontend
	Display change history in a web frontend

	Installation
	Configuration of web servers

	Extension project
	Development environment
	Technical details

	i-views services
	General
	Command line parameter
	Configuration file

	Mediator
	General
	System requirements
	Operating modes
	Installation
	Operation

	Bridge
	General
	Common command line parameters
	Configuration file "bridge.ini"
	REST bridge
	KEM bridge
	KLoadBalancer

	Jobclient
	General
	Configuration of the Jobclient

	Batch tool
	Common command line parameters
	Configuration file options
	Commands
	Running scripts
	Importing or exporting schema
	Importing licenses
	Upgrading components
	Executing a series of commands
	Example: Importing per batch tool

	Blob service
	Introduction
	Configuration
	SSL certificates

	Install as an OS service
	Login with OAuth 2.0
	Limitations
	Authorization flow
	Configuration

